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ABSTRACT 

Group 4 metalloporphyrin alkoxido, amido, hydrazido, and imido complexes: 

synthesis and reactivity 

Joseph Lyndon Thorman 

Major Professor: L. Keith Woo 
Iowa State University 

Previous examinations of group 4 coordination chemistry have predominately 

involved cyclopentadienyl, alkoxido, and amido complexes. The systematic exploration of 

the chemistry of group 4 metalloporphyrin complexes has recently been made possible by 

facile routes to useful porphyrin starting materials. Of interest are complexes containing 

hard :t-donor ligands. From these, bonding characteristics and steric constraints of the 

porphyrin periphery specific to the ligand can be studied. 

The implementation of the group 4 metal halide complexes, (TTP)MCl2, in 

metathesis reactions has provided routes to amido, alkoxido, hydrazido, and imido 

derivatives. These complexes have subsequently demonstrated unique reactivity properties. 

It has been found that the formation of zirconium and hafhium imido metalloporphyrin 

complexes is dependent on the steric bulk of the phenyl substituent of the lithiated amide. 

Bis(amido) complexes are isolable when the ortho positions of phenyl amide are 

unsubstituted. The presence of the sterically demanding methyl, fer/-butyl, or isopropyl 
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groups at the ortho position of the phenyl amide effects an a-elimination of a primary aryi 

amine from the unstable secondary bis(amido) precursor to produce the imido derivative. 

These imido compounds were key starting materials for the production and investigation of a 

number of complexes containing M-0 bonds. The zirconium and hafhium imido complexes, 

(TTP)M=NAr''^, couple two pinacolone molecules with concomitant loss of the amine 

HjNAr'^. The hydrazido, (TTP)Ti=NNR, (R = Me, Ph), and imido, (TTP)Ti=N'Pr, 

derivatives of titanium undergo novel nitrene group metathesis reactions with p-

chlorobenzaldehyde and with nitrosobenzene, respectively. 

Additional examples of atom and group transfer involving titanium(n) 

metalloporphyrins have been demonstrated. Utilization of a variety of donor molecules has 

facilitated the estimation of the double bond strength for complexes of the type (TTP)Ti=G 

(G = O, S, Se, NR). This dissertation focuses on the synthesis and reactivity of group 4 

metalloporphyrin complexes containing hard 7i-donor ligands and on the properties of 

titanium(n) metalloporphyrin species. 
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GENERAL INTRODUCTION 

Dissertation organization 

The first chapter of this dissertation is a literature review on group 4 transition metal 

porphyrin complexes. The remaining chapters incorporate individual papers that have been 

published, submitted for publication, or are being prepared for submission. Approximately 

50 percent of the work in chapter 2 was performed by Dr. Steven D. Gray. 

Porphyrins as ligands 

The distinct characteristics of porphyrins have been instrumental in the delineation of 

a variety of fundamental aspects of inorganic chemistry. The parent porphyrin is a planar, 

aromatic tetrapyrrole macrocycle that possesses four-fold symmetry. Aromaticity, according 

to the Hiickel rule [4n + 2], is derived from the 22 electrons, only 18 of which are used in 

any one continuous path. The /^pyrrole and meso positions can be flinctionalized to modify 

the electronic and steric properties of the metal and its coordination sphere. Such 

modifications are often utilized to facilitate solubility in common organic solvents. Two 

examples of commonly implemented synthetic porphyrins are shown in Figure 1. 

In porphyrin complexes, the metal is coordinated to the four pyrrole nitrogens in the 

central cavity. The porphyrin hole, approximately 4 A in diameter, and the size of the 

coordinated metal regulates the position of metal. Small metals will typically lie withm the 

porphyrin cavity and larger metals will be displaced above the mean N4 plane. However, 

some flexibility is possible. A revealing example is that of (Por)Sn(Ph)2.^ This six coordinate 
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metalloporphyrin complex can contain the phenyl Iigands in either a trans- or cis-

configuration such that the metal is found within or above the porphyrin plane, respectively 

(Figure 2). By discriminating preparative routes, both examples of this complex have been 

observed. Upon descending the group 4 triad, a transformation from a trcms- to cis-

configuration in the binding of two monodentate Iigands is observed for metalloporphyrin 

complexes. 

H3C 

CH3 

me50-tetra-/7-tolylporphyrin, H 2(TTP) octaethylporphyrin, H2(0EP) 

Figure 1. Conunon synthetic porphyrins. 

L 

L 

Figure 2. Arrangement of Iigands in six-coordinate metalloporphyrin complexes 
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The porphyrin provides a robust platform for the binding of a metal. The chelation 

effect of the tetradentate porphyrin accounts for the rare occurrence of demetalation of early 

transition metal complexes. The structural rigidity originating from the aromatic porphyrin 

precludes excessive rearrangement upon change of the oxidation state or the number of 

bound Ugands to the metal. 

Porphyrins possess valuable spectroscopic properties. For diamagnetic 

metalloporphyrin complexes, the use of 'H NMR spearoscopy often allows for 

unambiguous characterization of the coordination sphere of the metal. In the case of 

(TTP)TiL2 complexes which possess 04^ symmetry, there are only four resonances observed 

in the 'H NMR spectrum, assigned to the /?-pyrrole, o-tolyl, w-tolyl, and tolyl-CHj protons. 

Cisoid complexes, such as (TTP)ZrL2, have Cjv symmetry which resuhs in 6 resonances, the 

/?-pyrrole singlet, 2 o-tolyl doublets, 2 w-tolyl doublets, and one tolyl-CHj singlet. Also, the 

large ring current of the aromatic porphyrin strongly affects resonances of the metal bound 

ligands. Upfield shifts of 1 - 4 ppm are commonly observed in the 'H NMR spectra. An 

additional characterization tool for metalloporphyrin complexes is their strong electronic 

absorption in the UV-vis spectrum. 

Metalloporphyrin and related complexes 

The chemistry of metalloporphyrin complexes in general has been reviewed in a 

series of monographs edited by Dolphin.^ A general treatise of zirconium and haftiium 

organometallic compounds, predominately that of metallocene derivatives, is available.^ 

Metal-ligand multiple bonding in metalloporphyrin complexes is primarily found in groups 4-
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6 of the transition metals. Examples of oxo (M=0), sulfido (M=S), and selenido (M=Se) 

moieiies have been investigated. Fewer in number are examples of imido (M=NR), nitrido 

(MsN), and carbene (M=CR2) derivatives. The greater number of terminal oxo derivatives 

is a result of the strong multiple bond formed. Recent compilations have addressed the 

synthesis, reactivity, and applications of such metal-ligand multiple bonds. A general 

collection of the chemical aspects of metal-ligand multiple bonds can be found in a 

monograph by Mayer and Nugent.'* Also available is a specific examination of organoimido 

complexes of the transition metals by Wigley.' A recent review article considers 

metalloporphyrin derivatives of the early transition metals.® 
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CHAPTER 1: INTRODUCTION TO GROUP FOUR METAL TETRAAZA 

MACROCYCLE-SUPPORTED COMPLEXES; A LITERATUTIE REVIEW 

The chemistry of early transition metal porphyrin complexes has not been subject to 

the intense research that the later transition metals have. This is largely due to their 

oxophilic nature which resuhs in the formation of inert complexes. Also crippling the 

exploration of this class of compounds was the lack of efficient synthetic routes to useful 

starting materials. This chapter will present a brief summary of developments in the 

synthesis and reactivity of group 4 metal porphyrin complexes. 

New ligand arrays continue to be of interest in an attempt to expand upon the rich 

chemistry of the dichloro metallocene complexes, Cp^MCl, (M = Ti, Zr, Hf). However, the 

exploration of group 4 metalloporphyrin chemistry has been hindered by the lack of a 

versatile metallation procedure. For the early transition metal complexes, this was overcome 

by the development of alkali metal porphyrin complexes, (P0R)M2(L) (M = Li, Na, K; L = 

THE, DME).' These complexes are generated by treatment of the free base porphyrin, 

HjCPOR), with alkali metal amides in the presence of a donor molecule. The most 

conmionly used base is lithium silylamide, LiN(SiMe3)2, although for more sterically 

demanding porphryins such as HjCTMP) the parent lithium amide, LiNHj, is utilized. From 

these alkali metallated porphyrins the insertion of early transition metals is significantly 

simplified. High yield, large scale routes to these halogenated early transition 

metalloporphyrin derivatives have become available (eq 1).^ This class of molecules 

provides a foundation from which to synthesize metalloporphyrin complexes with potential 
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(POR)Li2(sol)2 + MCUsol)y - (POR)MCU + 2 LiCl + (y+2) sol (1) 

The chemistry of titanium metalloporphyrins before 1985 was largely limited to 

oxygen adducts. An important finding was the isolation of the first metalloporphyrin with a 

dioxygen moiety bound "side-on" to the metal, (0EP)Ti(Ti--02).' Variable temperature 'H 

NMR, X-ray crystal structure, and ab initio investigations show that the peroxo group 

eclipses two tram nitrogen atoms. This has been explained in terms of overiap of the 

oxygen ;rg-orbital with the metal Sd^y-orbital. Likewise, the sulfur and selenium analogues, 

(TTp)Ti(T^2-ch^ (Ch = S, Se), were found to adopt this same structure.'" Although 

reactivity studies were frustrated by the inert Ti=0^* fragment, the oxotitanium(IV) 

porphyrins can be converted to the dihalogeno complexes (P0R)TiX2 under strongly acidic 

conditions involving the use of hydrogen halides HX (X = F, CI, Br). Reduction of the these 

dihalogeno complexes with zinc amalgam produced a route into the mid-valent 

haiotitanium(III) porphyrins. Treatment of (TTP)TiF with aryl Grignard reagents or alkyl 

and aryl thiolates generated Ti(III) organometallic or thiolato species." Somewhat atypical 

of titanium chemistry, there were few reported alkoxido metalloporphyrin complexes. The 

titanium(III) methoxide, (TPP)Ti(OMe), was produced from the sequential treatment of 

(TPP)TiF with NaSMe and then HOMe.'^ The reaction of (TPP)Ti=0 with catechol or 1,2-

benzenedithiol produced the c/5-coordinated titanium derivatives, (TPP)Ti[l,2-(Ch)2-C6H4] 

(Ch = 0,S)." 
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Facile production of (P0R)TiCl2 from the lithiated porphyrin stimulated new work 

with titanium metalloporphyrin complexes. Initial emphasis centered mainly on low valent 

Ti(II) derivatives in the development of atom-transfer processes. In the presence of 

coordinating ligands such as alkynes or THF, (Por)TiCl2 is reduced by allylMgCl, LiAlH4, 

and NaBEtjH to (Por)Ti(L)2." These low valent species have proved effective in a variety 

of atom-transfer processes." 

Zirconium and hafnium metalloporphyrin chemistry experienced similar 

developmental problems as that of titanium. As a result of the difficulty in metalating the 

porphyrin, investigations prior to 1992 dealt only with sandwich compounds, (Por)2M. 

Examination of porphyrin-porphyrin interactions and nonlinear optical properties of these 

molecules continue to be of interest.'® Utilization of the dichloro complex, (Por)ZrCl2, first 

prepared by Arnold,'^* in metathesis reactions provided access to alkyl, aryl, alkoxide, 

acetate, triflate, benzenedithiolato, carborane, and cyclooctane derivatives of zirconium." 

The novel insertions of CO2 and acetone into the metal-alkyl bond of (0EP)ZrMe2 have also 

been studied. These form the respective bis(acetate), (0EP)Zr(0Ac)2, and bis(alkoxide), 

(0EP)Zr(0'Bu)2, complexes. The zirconium(IV) dialkyl, (OEP)Zr(CH2SiMe3)2, acts as a 

precatalyst for the catalytic hydrogenation of 1-alkenes by a putative zirconium hydride 

intermediate.'^' The significance of d° cationic group 4 complexes in alkene polymerization 

prompted the synthesis of [(OEP)M(CH2SiMe3)][BPh4] (M = Zr, Hf) from the reaction of 

[HNMejPhJlBPhJ with (OEP)M(CH2SiMe3)2. However, this product was unreactive 

towards ethylene.As an indication of the high oxophilicity of the zirconium and hafiiium 

organometallic complexes, (P0R)MR2, attempts at producing X-ray difii'action quality 
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crystals instead resulted in the isolation of four dimeric oxo/hydroxy bridged complexes, 

[(TPP)ZRO.-OH)J2," [(TPP)HF]2(;/-0H)J(^-0)» [(TPF)ZR]20/-OH)2(N-O)," [(OEP)ZT],(M' 

0H)3^.^' These examples of seven- and eight-coordinate zirconium and hafnium 

metalloporphyrins have been structurally characterized by single-crystal X-ray diffraction. 

Interestingly, all possess a M-0 bond that eclipses a M-Np^^ bond. Also common among 

these complexes is the presence of eclipsed porphyrin rings. It has been suggested that these 

conformations are stabilized by interactions between the oxygen p-orbitals and the metal d-

orbitals. The seven coordinate trimetaphosphate derivative, [NBu4][(0EP)H£(P309)], also 

displays eclipsed M-O/M-Npy^ bonds.*® Furthermore, the benzenedithiolato complex, 

(TPP)Hf(l,2-S2-CfiH4) posseses eclipsed Hf-S and Hf-Npyn„,j bonds. Examples of zirconium 

and hafnium dimers bridged by two perchalcogenido linkages, [(TTP)M]2C«-;f-Ch2)2, have 

been synthesized from the metal halide complex, (TPP)MCl2, and LijCh, (Ch = S, Se). The 

single-crystal X-ray diffraction study of the zirconium disulfido complex reveals that the two 

porphyrin rings are eclipsed but the Zr-S bonds do not eclipse Zr-N bonds.^ 

Another catalytic application of group 4 metalloporphyrins is the ethylalumination of 

1-heptyne.^ Treatment of (TPP)ZrX2 pC = CI, 02CMe, 02C'Bu, l,2-(02C)2-CsH4) with 

EtjAl in the presence of 1-heptyne, with subsequent work up in acidic media, produced 

alkenes with high regio- and stereoselectivity. Superior conversion is found for the 

porphyrin system over that of the metallocene homologue, Cp2ZrCl2. 

The diacetate complex, (P0R)M(0Ac)2 (M = Zr, Hf), was examined as an alternate 

starting material for the synthesis of additional organometallic and inorganic complexes due 

to its air and moisture stability, in contrast to the porphyrin dichlorides.^* Unfortunately, the 
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diacetate species is limited to the preparation of alkyl complexes upon treatment with the 

appropriate organolithium reagent. The single crystal X-ray difiraction study reveals that the 

Zr-O bonds in (Por)M(OAc)2 do not eclipse Zr-Np,^ bonds. 

Analogous to titanium, there are now examples of well characterized tri- and di

valent zirconium(in) and zirconium(II) metalloporphyrins." Reduction of the metal is 

accomplished by the reaction of (TPP)ZrCl2 with TlCp in the presence of Na/Hg to yield 

(TPP)Zr(Cp). The formation of (OEP)Zr(;f-PhC=CPh) was found from the reaction 

between equimolar amounts of magnesium, (0EP)ZrCl2, and diphenylacetylene in THF. 

This alkyne complex is described as a zirconium(II) metal stabilized by an four-electron 

7C-donor ligand, similar to the titanium complex analogue. This species is of potential 

importance in atom and group transfer reactions. 

As an indication of the robust metal binding platform provided by the porphyrin, 

demetalation of group 4 metalloporphyrin complexes has been documented in only two 

cases. Refluxing (0EP)ZrR2 (R = CI, alkyl, alkoxide, acetate, Por, etc.) with KF in acetic 

acid returns the free base porphyrin in quantitative yield, apparently facilitated by formation 

of strong Zr-F bonds.Demetalation has also been claimed in the treatment of 

(TPP)Zr(OEt2)2 with water.^*' 

Other than the titanium oxo complexes, there are a limited number of studies of 

group 4 species containing metal-ligand multiple bonds. The first group 4 imido 

metalloporphyrin was produced from treatment of (TTP)TiCl2 with 2 eq of LiNHR (R = Ph, 

tolyl, Cy).^ Another synthetic route was found by the direct insertion of the preformed 

metal-imido moiety, Ti(=N'Bu)Cl2(py)3, into the lithiated porphyrin, (TTP)Li2(THF)2.^ The 
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terminal chalcogenido complexes, (TTP)Ti=S and (TTP)Ti=Se, were synthesized by atom 

transfer from PhjPK^h to (TTP)Ti(7^-PhCHCPh). Other than hydrolysis, the only example 

of metal-ligand multiple bond reaaivity is found in the treatment of the terminal sulfido 

complex with elemental sulfur which yields the persulfido species, (TTP)Ti(7^-S2).'*'' The 

selenium analogue behaves similarly (eq 3). 

S S—S 

Ti ^ + Sg i- (2) 

Se 

Ti ^ + Se (3) 

Se,—Se 
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CHAPTER 2: ALKOXIDO, AMIDO, AND INDDO DERIVATTvES OF 

TITANIUM(IV) TETRATOLYLPHORPHYRIN 

A paper published in Inorganic Chemistry' 

Steven D. Gray, Joseph L. Thorman, Lisa M. Berreau, and L. Keith Woo*^ 

Abstract 

Treatment of (TTP)TiCl2 (1) [TTP = /nejo-5,10,15,20-tetra-/7-tolylporphyrinato 

dianion] with excess NaOR (R = Ph, Me, "Bu) affords the (bis)alkoxide derivatives, 

(TTP)Ti(0R)2 [R = Ph (2), Me (3), TBu (4)] in moderate yield. The corresponding amido 

derivative, (TTP)Ti(NPh2)2 (5) is prepared in an analogous fashion employing LiNPhj. The 

(bis)substituted complexes 2, 3, and 5, react cleanly with (TTP)TiCl2 to afford the ligand 

exchange products, (TTP)Ti(OR)Cl [R = Ph (6), Me (7)] and (TTP)Ti(NPh2)Cl (8), 

respectively. The monosubstituted complexes, 6-8, are also obtained by treatment of 1 with 

one equiv of the appropriate NaOR or LiNPh, reagent. Treatment of 5 with excess phenol 

produces the (bis)phenoxide derivative (2) and 2 equiv of HNPh2. The imido derivatives, 

(TTP)Ti(=NR) [R = /-Bu (9), Ph (10), CfiH4-/7-Me (11)] are prepared by the treatment of 1 

with excess LiNHR The /-butyl derivative (9) is also obtained by reaction of 1 with excess 

HjN-z-Bu at elevated temperatures. The phenyl imido complex (10) may be produced by the 

reaction of 0.5 equiv of PhN=NPh with (TTP)Ti('n--EtC=CEt) in refluxing toluene. Finally, 

(TTP)Ti(=NTMS) (12) is obtained by oxidation of (TTP)Ti(Ti2-EtC=CEt) with NjTMS. 
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Introduction 

The highly reactive nature of the metal-nitrogen bond in many group 4 imido 

complexes has lead to a rapidly growing area of research.^ For example, group 4 imido 

complexes can engage in aliphatic and aromatic C-H bond activation processes^ as well as 

numerous 2 + 2 cycloaddition reactions with unsaturated organic substrates.^ Additionally, 

group 4 imido complexes have found use in the catalytic hydroamination^ of alkynes and the 

synthesis of various nitrogen heterocycles.' 

Recently we reported the synthesis of a variety of imido-titanium meso-

tetratolylporphyrinato complexes of the type (TTP)Ti(=NR) (R = Ph, tolyl, cyclohexyl).^ 

Our interest in these systems stems from our observation that isoelectronic (P0R)Ti=0 

complexes undergo facile intermetal oxygen atom transfer.' In addition, (P0R)Ti=0 

complexes serve as precatalysts for the epoxidation of alkenes.* In this report, we 

summarize the preparation and properties of a variety of imido-titanium-porphyrin 

complexes and discuss their reactivity. Additionally, we report the synthesis and reactivity 

of new alkoxide and amide derivatives of titanium-porphyrin. These new complexes extend 

the class of group 4 porphyrin complexes possessing hard 7i-donor ligands.' 

Experimental 

General. All manipulations were performed under an inert atmosphere of nitrogen 

using a Vacuimi Atmospheres glovebox equipped with a Model M040-1 Dri-Train gas 

purifier. The glovebox atmosphere was continuously monitored with an Illinois Instrument 

Model 25S0 trace oxygen analyzer. The concentration of O2 in the glovebox was kept at 
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less than S ppm at all times. All solvents were rigorously degassed and dried prior to use. 

Benzene-d«, toluene, and hexane were fresluy distilled from purple solutions of sodium 

benzophenone and brought into the drybox without exposure to air. (TTP)TiCl2 (1) was 

prepared according to published procedures'" and recrystallized from CHjClj/hexane prior to 

use. Phenol was purchased from Aldrich and used as received. Methanol was purchased 

from Fisher, dried with CaHz, and vacuum transferred prior to use. NaOR (R = Ph, Me, 

'Bu) reagents were prepared by treating the appropriate alcohol with sodium in hexanes. 

Diphenylamine was purchased from Fisher and was recrystallized from hexanes prior to use. 

LiNPhz was prepared by reaction of the free amine with w-butyl lithium in hexanes. The 

lithium amide salts, LiNHPh, LiNHCfiH4-/?-Me, and LiNHCgH,! were prepared as previously 

described.' Lil^IH-NBu was prepared by the reaction of HiN-Z-Bu with w-butylithium in 

hexanes and was recrystallized from hexanes at -20 °C. All amines used above were 

purchased from Aldrich and were purified by literature methods." NjTMS was purchased 

from Aldrich and used as received. 

'H NMR data were recorded at 20.0 °C on either a Varian VXR (300 MHz) or 

Bruker DXR (400 MHz) spectrometer. Chemical shifts are referenced to proton solvent 

impurities (6 7.15, CgDsH). UV-vis data were recorded on a HP8452A diode array 

spectrophotometer. Elemental analyses (C, H, N) were performed by Atlantic Microlab of 

Norcross, Georgia. All samples were handled under nitrogen and WO3 was used as a 

combustion aid. MS-CI studies were performed on a Finnigan TSQ 700 at 70 eV in the 

negative ion mode using ammonia as the ionization gas. 
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(TTP)Ti(OPh)j (2). (TTP)TiCU (200 mg, 0.254 mmoi) and NaOPh (62 mg, 

0.53 mmol) were stirred in toluene (ca. 10 mL) to afford a light brown solution which 

became an opaque deep brown color after several minutes. After 4 hours, the solution was 

filtered. Removal of solvent fi-om the filtrate under reduced pressure afforded 

(TTP)Ti(0Ph)2 (123 mg, 0.137 mmol, 54% yield) as a semicrystalline, analytically pure, 

deep blue solid. UV-vis (toluene); 330, 338, 382, 424 (Soret), 484, 488, 608, 654 nm. 

'H NMR (CfiDg, 300 MHz): 9.02 (s, 8H, p-H), 8.01 (d, 8H,= 7.8 Hz, 7.26 

(d, 8H, Vh = 7.8 Hz, 2.38 (s, 12H, 5.83 (overlapping d&t, 6H, m-

p-C^i), 2.67 (m, 2H, o-CjHj). Anal. Calcd for C6oH4sN402Ti: C, 79.81; H, 5.13; N, 6.20. 

Found: C, 80.58; H, 5.44; N, 6.06. 

(TTP)Ti(OMe)2 (3). (TTP)TiCl2 (158 mg, 0.20 mmol) and NaOMe (122, 

2.25 mmol) were slurried in toluene and the resultant brown solution was rapidly stirred. 

After 5 h, the solution was filtered and the solvent was removed fi-om the dark brown filtrate 

to afford blue (TTP)Ti(0Me)2 (100 mg, 0.129 mmol, 66% yield). Despite numerous eflforts 

to obtain analytically pure compound, 3 consistently contains a trace (ca. 5%) of (TTP)Ti=0 

impurity which precluded elemental analysis. UV-vis (toluene): 426 (Soret), 552 nm. 

^HNMR (CgDg, 300 MHz): 9.07 (s, 8H, p-H), 8.07 (d, 8H, Vh = 7.8 Hz, 7 26 

(d, 8H, %.a = 7.8 Hz, -C^^^Me), 2.39 (s, 12H, -C^HVl/e), -0.83 (s, 6H, OCH^). MS (CI) 

Calcd. (found) m/e: [M*] 778 (778). 

(TTP)Ti(0'Bu)2 (4). (TTP)TiCl2 (44 mg, 0.056 mmol) and NaCBu (26 mg, 

0.28 mmol) were slurried in toluene and the resultant brown solution was rapidly stirred at 

ambient temperature. After 5 h, the solution was filtered and the solvent was removed fi-om 
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the dark brown filtrate to afford blue (TTP)Ti(0'Bu)2 (32 mg, 0.037 mmol, 67% yield). 

Despite numerous efforts to obtain analytically pure compound, 4 consistently contained 

traces (ca. 5%) of impurities which precluded elemental analysis. UV-vis (toluene); 450 

(Soret), 584, 622 nm. 'H NMR (C^Ds, 300 MHz): 9.05 (s, 8H, p-H), 8.23 (d, 8H, Vh = 

7.8 Hz, 7.31 (d, 8H, Vh = 7 8 Hz, 2.40 (s, 12H, -2.18 

(s, 18H, OBu). 

(TTP)Ti(NPh,)2 (5). (TTP)TiCl2 (326 mg, 0.413 mmol) and LiNPhj (150 mg, 

0.0859 mmol) were slurried in hexanes (ca. 20 mL). The solution slowly changed fi-om light 

brown to chocolate brown. A.fter 5 h, the solution was filtered to collect a dark brown solid. 

This solid was placed on a clean fntted filter and extracted with CH2CI2 (3x3 mL). 

Removal of solvent fi"om the resultant filtrate aflForded (TTP)Ti(NPh2)2 (251 mg, 

0.238 mmol, 58% yield) as a semicrystalline, blue solid. UV-vis (toluene): 426 (Soret), 

552 nm. 'H NMR (CgDs, 400 MEIz): 8.83 (s, 8H, p-H), 8.09 (d, 8H, Vh = 7.6 Hz, 

-C/f4Me), 7.37 (d, 8H, Vh = 7.6 Hz, -Cg/f^Me), 6.17 (d, 2H, Vh = 7.2 Hz, C^^), 6.05 

(d, 4H. VH = 7.2 Hz, C^,), 2.86 (d, 4H, VH = 7.2 Hz, CeHsX 2.44 (s, 12H, 

Anal. Calcd for CTjHs^NJi: C, 82.11; H, 5.36; N, 7.98. Found: C, 81.58; H, 5.98; N, 

7.56. 

(TTP)Ti(OPh)CI (6). (TTP)TiCl2 (45 mg, 0.058 mmol) and LiOPh (6 mg, 

0.06 mmol) were stirred in toluene (ca. 10 mL). The initial dark brown color of the solution 

progressively darkens to a nearly black color. After 15 h, the solution was filtered and solids 

on the fiit were extracted with toluene. The solvent was removed from the combined 

filtrates under reduced pressure to yield (TTP)Ti(OPh)Cl (31 mg, 0.37 mmol, 64% yield) as 
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a deep blue solid. UV-vis (toluene): 352, 404, 426 (Soret), 552 lun. 'H NMR (CgDs, 

400 MHz): 9.04 (s, 8H, p-H), 7.94 (d, 8H, Vh = 7.6 Hz, -Cg^^Me), 7.24 (m, 8H, 

5.77 (t, IH, Vh = 7.2 Hz, -OC^,), 5.69 (t, 2H, Vh = 7 2 Hz, -OCgAfs), 2.72 

(d, 2H, Vh = 8 u Hz, -OCs^fj), 2.37 (s, 12H, -CfiH^e). MS (CI) Calcd (found) m/e: 

[(TTP)TiOPh ] 767 (767); [(TTP)TiCr] 751 (751). 

(TTP)Ti(OMe)Cl (7). (TTP)TiCl2 (56 mg, 0.72 mmol) and LiOMe (3 mg, 

0.08 mmol) were dissolved in toluene (ca. 10 mL) to give a deep brown solution. After 4 h, 

the nearly black solution was filtered. The solid left on the fnt was extracted with toluene 

and CH2CI2. Removal of the solvent from the resultant fihrate under reduced pressure 

afforded (TTP)Ti(OMe)Cl (20 mg, 36% yield) as a deep blue, microcrystalline solid which is 

slightly contaminated with (TTP)TiCl2 (ca. 5%) presumably due to stoichiometry 

deficiencies. UV-vis (toluene): 376, 426 (Soret), 502 nm. 'H NMR (CgDg, 300 MHz): 

9.08 (s, 8H, p-H), 8.07 (d, 4H, VH = 7.8, -CgH^Me), 7.90 (d, 4H, VH = 7.8, -C6H4Me), 

7.26 (d, 4H, VH = 81, -C^Me), 7.21 (d, 4H, VH = 8.1, -CsH^Me), 2.38 (s, 12H, 

-C«H4Me), -0.79 (s, 3H, -OMe). MS(CI) Calcd (found) m/e: [(TTP)TiClO-], 767 (767); 

[(TTP)TiCn, 751 (751). 

Reaction of (TTP)TiCl2 with *BuOH. An anaerobic C^Dg (0.7 mL) solution of 

(TTP)TiCl2 (20 mg, 0.026 mmol), *BuOH (14 jiL, 0.15 mmol), was sealed in an NMR tube 

under N2. The mixture was monitored by 'H NMR until no further reaction was observed. 

The only new species observed in solution were (TTP)Ti(0*Bu)Cl (80%) and (TTP)Ti=0 

(7%). Unreacted(TTP)TiCl2 (13%) and "BuOH were also present. 'H NMR signals for 

(TTP)Ti(0'Bu)Cl (300 MHz): 9.06 (s, 8H), 8.13 (d, 4H, VH = 7 8 Hz, 7.92 (d. 



www.manaraa.com

19 

4H, = 7.8 Hz, 7.29 (m, 8H, 2.38 (s, 12H, -CsH^A/e), -2.25 (s, 

9H, 'Bu). 

(TTP)Ti(NPh2)CI (8). In a general procedure, approximately one equiv of LiNPhj 

was added to (TTP)TiCl2. For example, (TTP)TiCl2 (53 mg, 0.067 mmol) and LiNPhz 

(13 mg, 0.073 nunol) were stirred in hexanes (ca. 10 mL). The initial light brown solution 

gradually darkened to deep brown solution. Alter 4 h, the solution was filtered and the 

solvent was removed from the filtrate under reduced pressure to afford (TTP)Ti(NPh2)Cl 

(27 mg, 0.029 mmol, 43% yield) as a deep blue solid. Due to minor differences in 

stoichiometry, compound 8 is consistently contaminated with (TTP)TiCl2 or (TTP)Ti(NPh2)2 

(ca. 5%). Even with several recrystaliizations, these impurities could not be removed and 

hence preclude elemental analysis. UV-vis (toluene): 372,428 (Soret), 554 ran. 'H NMR 

(CfiDs, 300 MHz); 8.98 (s, 8H, p-H), 8.05 (d, 4H, = 7.8, -CgH^Me), 7.88 (d, 4H, 

'JH-H = 7.8, -C6H4Me), 7.44 (m, 8H, -C6H4Me), 2.41 (s, 12H, -C6H4Me), 6.12 (t, 2H, 

%-H = 7.2, p-H), 5.96 (t, 4H, ^JH.H = 7.2, w-H), 2.83 (d, 4H, VH = 7.2, o-H). MS (CI) 

Calcd (found) m/e: [(TTP)TiCn, 751 (751); [(TTP)Ti(NPh2)Cl-H-], 918 (918). 

(TTP)Ti(=N-r-Bu) (9). (TTP)TiCl, (101 mg, 0.13 mmol) and LiNH-/-Bu (21 mg, 

0.27 mmol) were dissolved in toluene (ca. 10 mL) to afford a deep red solution. After 

5 min, the solution was filtered and the resultant deep red filtrate was taken to dryness under 

reduced pressure to afford (TTP)Ti(=N-r-Bu) (95 mg, 0.12 mmol, 94% yield) as a 

semicrystaliine, purple solid. Analytically pure samples could be obtained by recrystallization 

firom toluene/hexane solution at -20 "C. UV-vis (toluene): 424 (Soret), 548 nm. 'H NMR 

(CgDfi, 300 MHz): 9.24 (s, 8H, p-H), 8.32 (d, Vh = 7.65 Hz, 4H, 8-04 (d. 
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VH = 7.05 Hz, 4H, 7 34 (d, J = 5.70 Hz, 7.30 (d, J = 5.70 Hz, 

-C^4Me), 2.42 (s, 12H, -CgH^-C/^j), -1.58 (s, 9H, TBu). Anal. Calcd for CsjH^sNjTi: C, 

79.28; H, 5.76; N, 8.89. Found: C, 79.34; H, 5.76; N, 8.75. 

(TTP)Ti(=NPh) (10). (TTP)TiCl2 (104 mg, 0.132 mmol) and LiNHPh (50 mg, 

0.51 mmol) were dissolved in toluene (ca. 15 mL). The solution gradually turned a deep red 

color. Aiter 30 min, the solution was filtered to remove a black solid and the resultant ruby 

filtrate was taken to dryness under reduced pressure. This afforded (TTP)Ti(=NPh) (94 mg, 

0.12 mmol, 88% yield) as a purple solid. Analytically pure samples could be obtained by 

recrystallization from toluene/hexanes at -20 "C. UV-vis (toluene): 426 (Soret), 548 nm. 

'HNMR (QD^, 300 MHz): 9.21 (s, 8H, p-H), 8.14 (d, 4H, -CgZ/^CHj), 8.03 (d, 4H, 

7.30 (d, 8H, -Cg^^CHj), 5.72 (m, 3H, m-, p-H), 3.85 (d, 2H, o-H), 2.41 (s, 

12H, -CS^CH^y MS {EI} Calcd (found) (m/e): 806 (807), [M]'. Anal. Calcd for 

Cs4H4,N5Ti: C, 80.29; H, 5.12; N, 8.67. Found: C, 79.26; H, 5.48; N, 8.28. 

(TTP)Ti(=NQH4-|;-Me) (11). (TTP)TiCl, (82 mg, 0.104 mmol) and LiNHC6H4Me 

(45 mg, 0.40 mmol) were dissolved in toluene (ca. 15 mL) to produce a red solution. After 

4 h, the solution was filtered and the resultant deep red filtrate was taken to dryness under 

reduced pressure to afford (TTP)Ti(=NCsH4-/7-Me) (74 mg, 0.09 mmol, 87% yield) as a 

purple-red solid. Analytically pure samples could be obtained by recrystallization fi'om 

toluene/hexanes at -20 °C. UV-vis (toluene): 426 (Soret), 548 nm. 'H NMR (C^Dg, 

300 MHz); 9.21 (s, 8H, fi-H), 8.15 (d, 4H, 8.04 (d, 4H, -C^ff^CHj), 7.30 (d, 

8H, -C^^CHj), 5.53 (d, 2H, m-H), 3.81 (d, 2H, o-H), 2.41 (s, 12H, -Cfi^CHj), 1.29 (s. 
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SH-a/j). Anal Calcd for CjjH^NjTi: C, 80.36; H, 5.28; N, 8.52. Found; C, 80.29; H, 

5.47; N, 8.20. 

(TTP)Ti(=NTMS) (12). (TTP)Ti(Ti--EtC=CEt) (105 mg, 0.132 mmol) was 

dissolved in toluene (ca. 10 mL) and neat N3TMS (ca. 0.5 mL, ca. 4.0 mmol) was added to 

the rapidly stirred solution. Evolution of gas was observed and after 16 h, the solution was 

taken to dryness under reduced pressure to afford a dark oil. The oil was dissolved in a 

minimum of toluene (ca. 2 mL) and the solution was layered with hexanes (ca. 6 mL). After 

cooling the solution at -20 °C for 14 h, deep purple crystals formed. The crystals were 

collected by filtration and dried in vacuo to aJBTord analytically pure (TTP)Ti(=NTMS) 

(40 mg, 0.050 mmol, 38% yield). UV-vis (toluene): 428 (Soret), 550 nm. 'H NMR (CgDg, 

300 MHz); 9.25 (s, 8H, P-H), 8.31 (d, VH = 9.0 Hz, 4H, -Cg^^Me), 8.00 (d, VH = 9.0 

Hz, 4H, 7.32 (m, 8H, 2.42 (s, 12H, -C6H4-C^3), -2.04 (s, 9H, 

SiC^j). Anal. Calcd for; C5iH45N5SiTi; C, 76.20; H, 5.64; N, 8.71. Found; C, 76.04; H, 

5.99; N, 8.04. 

Results 

Synthesis and Properties of Bis(Aiicoxide) Complexes. The titanium(IV) 

tetratolylporphyrinato complex (TTP)TiCl2 (1) reacts readily with sodium phenoxide in 

toluene to afford the blue, bis(phenoxide) complex, (TTP)Ti(0Ph)2 (2) in moderate yield 

(eq 1). The (bis)alkoxide complexes, (TTP)Ti(0Me)2 (3) and (TTP)Ti(0'Bu)2 (4), are 

obtained in an analogous fashion. Complexes 2 and 3 have also been prepared by the 

reaction of 1 with 2 equiv of the free alcohols in the presence of piperidine, which serves to 
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(TTP)TiCl2 + 2 NaOR - (TTP)Ti(0R)2 + 2 NaCl 

[R = Ph(2),Me(3), 'Bu(4)] 

(1) 

scavenge the HCl byproduct. The NMR spectra of these complexes are consistent with 

the alkoxide ligands being arranged in a trans geometry. In particular, the and 

protons of the tolyl groups of the [TTP]^" ligand appear as two sharp sets of doublets. 

These data indicate that the molecule possesses a mirror plane through the center of the 

porphyrin and an approximate 04^ symmetry. In the ambient temperature 'H NMR spectrum 

of 2 in CgD«, the protons of the phenoxide ligands appear at 2.67 ppm (H^) and 5.83 ppm 

(H„ and Hp). The large upfield shift of these protons is representative of ligands above the 

porphyrin plane. Similarly, a strong upfield shift is observed for the Me groups of the 

methoxide ligands in 3. 

In the solid state, complex 2 is inert and remains unchanged for more than four 

months in air. The bis phenoxide is also stable to hydrolysis in solution with excess water 

for more than one week. In contrast, exposure of a solution of the bis methoxide to air 

results in instantaneous and quantitative conversion to the 0x0 complex (TTP)Ti=0. 

Treatment of (TTP)Ti(0R)2 (R = Me, "Bu) with excess phenol cleanly produces 

(TTP)Ti(0Ph)2 and ROH. In general, the spontaneous reaction involves the most basic 

ligand becoming protonated. Thus, treatment of (TTP)Ti(0Ph)2 with 7.6 equiv MeOH 

produces only 0.3 equiv of (TTP)Ti(OPh)(OMe) and 0.1 equiv of (TTP)Ti(0Me)2. 

In solution 2 has been found to engage readily in intermetal ligand exchange 

reactions. Thus, treatment of 2 with one equiv of (TTP)TiCl2 in toluene rapidly (ca. 10 min) 
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and quantitatively affords a new product, 6, in high yield. The NMR spectrum of 6 

displays an aa'nun' pattern for the porphyrin tolyl protons. Thus, the porphyrin plane does 

not serve as a mirror plane of symmetry in this new molecule. In addition, the porphyrin 

tolyl ligands are not freely rotating about the C -C;,^ bond on the NMR timescale. 

Accordingly, this new complex is formulated as (TTP)Ti(OPh)Cl (6) (eq 2). Complex 6 is 

also prepared by the reaction of (TTP)TiCl2 with 1 equiv of NaOPh in toluene. The 

monomethoxide complex, (TTP)Ti(OMe)Cl has also been synthesized by both these routes. 

Interestingly the intermetal ligand redistribution reaction described in eq 2, unlike previously 

reported exchanges for (TTP)Ti(IV) complexes, appears to be driven to completion. The 

reverse process, disproportionation of (TTP)Ti(OPh)Cl (6) to (TTP)TiCl2 and 

(TTP)Ti(0Ph)2, has not been observed by either variable temperature NMR experiments 

or UV-vis studies. 

Alcohols are not sufficiently basic to displace both chloro ligands in (TTP)TiCl2. 

Instead an equilibrium is established for monoalkoxide formation as represented in eq 3. 

(TTP)TiCl2 + (TTP)Ti(0Ph)2 - 2 (TTP)Ti(OPh)Cl (2) 

(TTP)TiCl2 + 2 HOR (TTP)Ti(OR)Cl + [HoOR]" + Cl" (3) 

In a mbcture of 2.7 PhOH and (TTP)TiCl2 in CgDg, the equilibrium lies far to the left. No 

monophenoxide complex is detected by 'H NMR. When 6.7 equiv of MeOH are added to 

(TTP)TiCl2 in CgDs. the equiUbrium ratio of (TTP)Ti(OMe)Cl to (TTP)TiCl2 is 0.37:1. With 
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the more basic /-butanol (5.8 equiv), the resulting ratio of (TTP)Ti(0'Bu)Cl to (TTP)TiCl2 is 

6.2; 1. Addition of an exogenous base drives the reaction completely to bisalkoxide 

formation. Thus, injection of 3 equiv of piperidine into an equilibrated NMR tube containing 

(TTP)TiCl2 and /-butanol in QDg resuhed in quantitative formation of (TTP)Ti(0*Bu)2. 

Preparation of Bis(Amido) Complexes. Treatment of freshly prepared (TTP)TiCl2 

with i. 2 equiv of LiNPh; in hexanes results in the formation of the bis(amido) complex, 

(TTP)Ti(NPh2)2 (5) in modest yield (eq 4). This reaction is very sensitive to solvent choice. 

In our hands, 5 could not be produced in pure fashion employing toluene, benzene, THF or 

(TTP)TiCl2 + 2 LiNPh, - (TTP)Ti(NPh2)2 (5) + 2 LiCl (4) 

CH2CI2 as solvent. In these solvents, intractable paramagnetic (presumably Ti(III)) species 

are formed. Another difficulty in preparing 5 is its extreme moisture-sensitivity. Complex 5 

decomposes instantaneously in air to afford (TTP)Ti=0 and free HNPh2. Our attempts to 

prepare other (bis)amido complexes have met with no success. Thus, the reaction of 1 with 

LiNEtj, LiNTMS2, LiN(CsHii)2, TMSNEtj, or lithium tetrahydroquinolide, under similar 

conditions employed to produce 5, lead only to intractable, paramagnetic products. Finally, 

treatment of 5 with other secondary amines, such as HNEt,, piperidine, /-BUNH2, or 1,2,3,4-

tetrahydroquinoline, did not result in the production of any new (bis)amido transamination 

products. These observations parallel those described for the alkoxide/alcohol system. The 

equilibrium favors the complex bound to the least basic secondary amide. 
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Analogous to the bis(alkoxide) complexes discussed above, the diphenyiamido 

ligands in 5 are disposed in a trans fashion. Thus, 5 displays pseudo 04^ symmetry in the 

ambient 

temperature 'H NMR spectrum. In CgDc the resonances for phenyl groups of the NPhj" 

ligands are shifted upfield [6 6.17 (H^), 6 6.05 (H„) and 6 2.86 (HJ] relative to the free 

amine, again due to their proximity to the porphyrin ring current. 

Like the bis(alkoxide) derivatives, the bis(amido) complex undergoes rapid ligand 

redistribution upon treatment with 1 equiv of (TTP)TiCl2 to afford the mono(amido) 

complex, (TTP)Ti(NPh2)Cl (8) (eq 5). Again, this reaction appears to be entirely 

irreversible. Complex 8 can be prepared independently from treatment of 1 with 1 equiv of 

LiNPhj. 

(TTP)Ti(NPh2)2 + (TTP)TiCl, - 2 (TTP)Ti(NPh2)Cl (5) 

As is typical for early transition metal amido complexes, 5 undergoes rapid 

alcoholysis with phenol to afford (TTP)Ti(0Ph)2 (2) (eq 6). Not surprisingly, this reaction is 

irreversible. Complex 2 does not react with HNPh, to any observable extent. This behavior 

is attributed to the acidity of phenol relative to diphenylamine. Correspondingly, water 

rapidly converts (TTP)Ti(NPh2)2 to the 0x0 complex, (TTP)Ti=0. 

(TTP)Ti(NPh2), + 2 HOPh ^ (TTP)Ti(0Ph)2 + 2 HNPhz (6) 
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Preparation of Imido Complexes. From Ti(IV) Species via a-Hydrogen 

Abstraction. Treatment of (TTP)TiCl2 with 2 equiv of LiNH-/-Bu in toluene results in the 

formation of the imido derivative (TTP)Ti(=N-/-Bu) (9) (eq 7). This reaction is extremely 

clean and proceeds quantitatively in to afford 9 along with 1 equiv of /-butyl amine 

('H NMR, PhjCH internal standard). The 'H NMR spectrum (C^Dg) of 9 reveals four 

doublets assignable to the H^, H„, and H„' resonances of the [TTP]^' ligand, indicating 

the expected lack of a mirror plane of symmetry coincidental with the porphyrin plane. The 

protons of the /-butyl group are shifted strongly upfield (8-1.54 ppm), which as discussed 

above, is diagnostic for axially bound ligands in porphyrin systems. Analogous preparations 

have been employed to synthesize the series (TTP)Ti(=NR) [R = Ph (10), /7-tolyl (11)] all of 

which are obtained in high yield (eq 7). Attempts to prepare the parent imido complex by 

treatment of 1 with LiMHj have, thus far, proved unsuccessful. 

(TTP)TiCl, + 2 LiNHR - (TTP)Ti(=NR) + H,NR + 2 LiCl (7) 

[R = t-Bu (9), Ph (10), p-tolyl (11)] 

As noted above, with the secondary lithium amide, LiNPh,, we can prepare the 

monosubstituted amido complex, (TTP)Ti(NPh2)Cl. However, with primary lithium amides 

this is not possible. For example, treatment of 1 with one equiv of LiNH-/-Bu failed to 

produce any (TTP)Ti(NH-/-Bu)Cl. Instead, this reaction led to the formation of a half equiv 

of (TTP)Ti(=N-r-Bu) (9) and left an equimolar amount of unreacted 1 (eq 8). The reaction 

of (TTP)Ti(NPh2)Cl, a model complex for (TTP)Ti(NHR)Cl, with one equiv of LiNH-/-Bu 
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did not allow the isolation or observation of the mixed amido complex (TTP)Ti(NPh2)(NH-

/-Bu). Instead, the only spectroscopically observable products at early times (~10 min) were 

(TTP)Ti(=N-/-Bu), the bis(amido) complex (TTP)Ti(NPh2)2, formed in an approximate one-

to-one ratio along with free H2N-/-BU (eq 9). The bis(aniido) complex apparently forms 

from displaced NPhj" which undergoes metathesis with unreacted (TTP)Ti(NPh2)Cl. After 

long reaction times (> 10 h), the final products were (TTP)Ti=N-/-Bu and free HNPhj from 

the subsequent reaction between (TTP)Ti(NPh2)2 and HjN-z-Bu. This latter process was 

confirmed independently. Treatment of (TTP)Ti(NPh2)2 with excess HzN-z-Bu 

quantitatively produced (TTP)Ti=N-r-Bu and HNPh, (eq 10). 

(TTP)TiCl2 + 1 LiNH-r-Bu -

'/2 (TTP)Ti(=N-/-Bu) + '/z (TTP)TiCl, + '/2 HjN-f-Bu + LiCl (8) 

(TTP)Ti(NPh2)Cl + 1 LiNH-/-Bu -

(TTP)Ti(=N-r-Bu) + (TTP)Ti(NPh2)2 + HjN-NBU + LiCI (9) 

(TTP)Ti(NPh2)2 + H2N-r-Bu - (TTP)Ti=N-/-Bu + 2 NHPhj (10) 

It has been previously reported that treatment of (TTP)TiCl2 with excess aniline does 

not produce the imido derivative, (TTP)Ti(=NPh) (10).^^ In accord with this earlier report, 

we have confirmed that the aiylimido complexes cannot be synthesized in this manner. 

Thus, under similar conditions, 1 is unreactive towards p-toluidine. We have found. 
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however, that heating toluene solutions of 1 with excess /-but^'lamine produces 

(TTP)Ti(=N-/-Bu) (9) in high yield along with [H3N-/-BUICI byproduct. 

Imido Complexes Via Disproportionation orTi(IlI). We have also found that 

Ti(IV)-iniido complexes can be produced from Ti(in)-precursor complexes. For example, 

toluene solutions of (TTP)TiCl react instantaneously with LiNH-/-Bu in the presence of 

PhCsCPh to provide (TTP)Ti(=N-/-Bu) (9) and the known alkyne adduct, 

(TTP)Ti(ri^-PhCsCPh)"* in a one-to-one ratio (eq 11). Similarly, reaction of (TTP)TiCl 

with 1 equiv of LiNH-^Bu followed by the addition of excess pyridine affords O.S equiv of 

the imido complex, 9, along with 0.5 equiv of (TTP)Tl(py)2'^'' (eq 12). These 

disproportionation reactions underscore the strong thermodynamic driving force for the 

formation of these robust Ti(IV)-imido complexes. 

(TTP)TiCl + LiNH-/-Bu + xs PhC^CPh -

'/2 (TTP)Ti(=N-/-Bu) + '/2 (TTP)Ti(TI--PhC=CPh) + '/z H^N-Z-Bu + LiCl (11) 

2 (TTP)TiCl + LiNH-r-Bu + xs py -

'/2 (TTP)Ti(=N-/-Bu) + '/2 (TTP)Ti(py)2 + '/a HoN-Z-Bu + LiCl (12) 

Imido Complexes Via Oxidation of Ti(n) Complexes. Imido complexes are 

available from the oxidation of Ti(II) complexes with [NR]^~ sources. For example, the 

Ti(II) alkyne complex, (TTP)Ti(r|--EtCsCEt) reacts instantaneously with excess N3TMS in 

toluene to provide the imido complex (TTP)Ti(=NTMS) (12) and one equiv of free 
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EtCsCEt (eq 13). Additionally, treatment of (TTP)Ti(ri^-EtC=CEt) with 0.5 equiv 

PhN=NPh in refluxing toluene provides (TTP)Ti(=NPh) (10) as the sole porphyrin product 

(eq 14).'* Details of this reaction will be reported elsewhere.'' 

(TTP)Ti(ri2-EtC2CEt) + xsN3TMS - (TTP)Ti(=NTMS) + EtCsCEt + N2 (13) 

(TTP)Ti(Ti2.EtC£CEt) + 0.5 PhN=NPh - (TTP)Ti(=NPh) + EtC^CEt (14) 

Reactivity of Ti-Imido Complexes. The imido complexes described above show 

only limited reactivity. As expected, treatment of (TTP)Ti(=NR) complexes with alcohols 

such as phenol and methanol results in the clean formation the (bis)alkoxide complexes, 2 

and 3 respectively along with free amine. Unlike previously reported Ti-imido complexes,'^ 

(TTP)Ti(=NR) complexes do not undergo exchange with primary amines. Thus treatment 

of (TTP)Ti(=N-/-Bu) with aniline does not afford (TTP)Ti(=NPh) and free /-butyl amine. 

The reverse reaction of (TTP)Ti(=NPh) with excess r-butyl amine also does not proceed to 

any observable extent. We have previously shown that the 0x0 analogue, (TTP)Ti(=0) 

rapidly undergoes incomplete oxygen atom transfer with (TTP)Ti(n) species to afford the 

bridging Ti(III)-oxo dimer, [(TTP)Ti]2(n-0). In contrast, the imido complexes described 

above do not react with (TTP)Ti(ii^-EtCsCEt) to afford the Ti(III) dimer, [(TTP)Ti]2(n-

NPh). This difference may be due to the steric problems presented by the imido substituents. 



www.manaraa.com

30 

Discussion 

The (TTP)Ti-fragment serves as a useful template for the study of a wide range of 

metal-ligand multiple bonds. The series (TTP)Ti(=X) (X = O, S, Se, NR) is now firmly 

established.'^ In the future, we hope to extend this interesting class of complexes to include 

other metal-ligand multiply bonded species such as alkylidenes and phosphinidines. In order 

to design rational syntheses of these complexes, we have attempted to elucidate the 

mechanism by which the imido ligands are introduced via lithium amides. The formation of 

imido complexes from 1 and LiNHR must involve a-hydrogen abstraction. Two possible 

mechanisms are shown in Scheme 1. A concerted intramolecular elimination from the 

R H 
^NHR" 

HoNR 

NR 

R H 

Scheme 1. 
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(bis)amido complex is unlikely given the known trans disposition of the amido ligands in 

(TTp)Ti(NPhj)2 (5). A concerted bimolecular pathway in which 2 equiv of HjNR are 

simultaneously eliminated from two mol of (TTP)Ti(NHR)2 is also implausible due to the 

steric nature of the porphyrin ligands. Intermolecular deprotonation of an imido ligand by a 

second equivalent of LiNHR is a reasonable alternative. Moreover, the strong Tt-donor 

character of the amide ligand may facilitate the dissociation of the trans chloride and/or 

increase the acidity of the a-proton (Scheme 2). This hypothesis is supported by reaction 8 

in which only (TTP)Ti(=N-/-Bu) was formed and no monoamido complex, (TTP)Ti(NH-N 

Bu)Cl, was observed on treating 1 with 1 equiv of LiNH-/-Bu. Additionally, since other 

amide reagents (e.g. LiNEtj) lead only to reduction of Ti(IV) to Ti(III), deprotonation of a 

primary amide ligand appears to compete effectively with reduction processes. Moreover, 

our inability to isolate or observe a primary amido complex is consistent with the high acidity 

of the N-H proton of the complexed amido ligand. 

The strong 7C-donor ability of the amido ligand also provides a rationale for reactions 

5 and 8. In the ligand disproportionation (eq S), the amido ligand prefers to be trans to a 

N 

Scheme 2. 
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weaker chloro ligand than trans tc a second strong 7t-donor amido ligand. Correspondmgly, 

treatment of (TTP)Ti(NPh2)Cl with LiNH-/-Bu (eq 9) is likely to produce transiently the 

mixed amido complex (TTP)Ti(NPh2)(NH-/-Bu). Competing n-donation serves to labilize 

both ligands. The loss of the primary amide is nonproductive. However, dissociation of 

NPhz" produces [(TTP)Ti(NH-/-Bu)]^ having an acidic a-hydrogen which is rapidly 

deprotonated to produce (TTP)Ti(=N-/-Bu). 

To the best of our knowledge, the production of imido complexes from Ti(III) 

sources (reactions 11 and 12) is unprecedented. There are several scenarios one could 

envision to account for these reactions. It is important to note that (TTP)TiCl does not 

react with either diphenylacetylene or pyridine to produce (TTP)TiCl2 and 

(TTP)Ti(Ti2-Ph-CHC-Ph) or (TTP)Ti(py)2. Thus, (TTP)TiCl does not readily 

disproportionate. If the reaction of (TTP)TiCl with LiNH-r-Bu affords initially 

(TTP)Ti(NH-/-Bu), this species could undergo electron transfer (either in an inner or outer 

sphere sense) with a second Ti(III)-species to afford either (TTP)Ti(NH-/-Bu)X (X = NH-r-

Bu or CI) or [(TTP)Ti(NH-/-Bu)]' along with a Ti(II) complex (Scheme 3). The former 

complex could be deprotonated by an additional equiv of Li-amide to afford the imido 

complex while the latter complex is readily trapped by pyridine or diphenylacetylene. 

However, it is not clear why (TTP)Ti-NH-f-Bu would be more prone to disproportionation 

than (TTP)TiCl. However, based on the observations above, it appears that a-hydrogen 

abstraction occurs much more rapidly than reduction for Ti porphyrin complexes. Thus, we 

propose that any (TTP)Ti(NH-/-Bu) formed in the reaction is rapidly deprotonated to afford 

the transient Ti(III)-imido complex anion, [(TTP)Ti(=N-/-Bu)]". Due to its anionic charge. 
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CI NR 

+ 2LiNHR Ph-CsC-Ph 
toluene 

+ + UCl 

+ PhC=CPh 
-cr 

(inner or outer sphere electron transfer) 

Scheme 3. 

this Ti(III)-iinido complex presumably is more capable of reducing (TTP)TiCl to Ti(n), 

which is subsequently trapped by either pyridine or diphenylacteylene. 

Conclusion 

In this work we have demonstrated that (TTP)TiCl2, which is readily prepared from 

the reaction of TiC^THF), with Li2(THF)2TTP, serves as a useful precursor for the 

synthesis of a variety of Ti-porphyrin complexes possessing hard Tt-donor ligands. Prior to 

this work, the only reported complexes of this class of compounds are (TPP)Ti(OMe),'^ and 

the Ti^-catecolate, (TTP)Ti(02C6H4)." We have shown that the Ti(IV)-(bis)alkoxides can be 

readily produced. Perhaps surprisingly, given the immense number of Ti-amido complexes 

known," we have found the only isolable (bis)amido-porphyrin complex is (TTP)Ti(NPh2)2. 

The imido complexes, given the reactivity displayed by the oxo analogue {vide supra), are 
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perhaps of the greatest interest. Of particular interest, is the fact that (TTP)Ti(=NR) 

complexes may be isolated starting from Ti-porphyrin complexes in various oxidation states. 
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CHAPTER 3: SYNTHESIS AND REACTIVITY OF HYDRAZID0(2-) 

DERTVATIVES OF TITANIUM(IV) TETRATOLYLPORPHYRIN 

A paper to be submitted to Inorganic Chemistry 

Joseph L. Thorman and L. Keith Woo* 

Abstract 

Titanium porphyrin hydrazido complexes (TTP)Ti=NNR, [TTP = meso-tetra-p-

tolylporphyrinato dianion, R = Me, 1; Ph, 2] were synthesized by treatment of (TTP)TiCl2 

with 1,1-disubstituted hydrazines HjNNR, (R = Me, Ph) in the presence of piperidine. The 

nucieophilic character of the hydrazido moiety is demonstrated in the reaction of complexes 

1 and 2 with p-chlorobenzaldehyde which yield the titanium oxo complex (TTP)Ti=0 and 

the respective hydrazones. Protonation of complexes 1 and 2 with phenol or water 

produced the 1,1-disubstituted hydrazine along with (TTP)Ti(0Ph)2 or (TTP)Ti=0, 

respectively. Similar reactivity ofp-chlorobenzaldehyde and phenol with (TTP)Ti=N'Pr, 3, 

was observed. The reaction of complex 3 with nitrosobenzene cleanly forms the diazene 

compound, 'PrN=NPh, and the terminal oxo complex, (TTP)Ti=0. 

Introduction 

Research dedicated to early transition metal complexes possessing ligand-metal 

multiple bonds continues to develop. A substantial body of investigation concerning group 
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4 metals in this area has focused on the relatively electron-rich metallocene derivatives.'*^ 

From these studies, imido complexes have shown potential as aziridination, hydroamination, 

and heterocyclization catalysts. In comparison, the reactivity exhibited by the titanium imido 

functional group in porphyrin analogues is limited.^ This lower reactivity is presumably due, 

in part, to steric factors involving the porphyrin ligand and the imido substituent. 

Although the chemistry of imido complexes is now well established for groups 4-7, 

investigation of the isolobal hydrazido moiety has been confined mainly to groups 5-7.^ 

Examples of group 4 hydrazido(2-) complexes are limited to a dimeric species 

[CpClTi=NNR2]2' and two monomeric complexes, Cp2Ti=NN(TMS)2 ® and 

(TMTAA)Ti=NNPh2.^ Titanium metalloporphyrin hydra2ido(2-) complexes, 

(TTp)Ti=NNR^ may offer an additional assessment of the reactivity of the Ti=N moiety, 

aided by the decreased steric bulk at the N^. As part of a continuing study of group 4 

metalloporphyrin complexes containing terminal metal-nitrogen bonds, we report the 

synthesis of new examples of titanium hydrazido(2-) complexes. 

Experimental 

General. AH manipulations were performed under an atmosphere of nitrogen using 

a Vacuum Atmospheres glovebox equipped with a Model M040-1 Dri-Train gas purifier. 

All solvents were rigorously degassed and dried prior to use. Benzene-c/^, toluene, and 

hexane were fi'eshly distilled firom purple solutions of sodium benzophenone and brought 

uito the drybox without exposure to air. Methylene chloride was dried by passage through a 

column of activated neutral alumina. Literature procedures were used to prepare 
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(TTP)Ti=NTr,* 3, and (TTP)TiCl2.' The latter compound was recrystallized from 

CHjClj/hexane prior to use. 1,1-Dimethylhydrazine vvas purchased from Aldrich and dried 

by passage over a column of activated neutral alumina. 1,1 -Diphenylhydrazonium 

hydrochloride was used as received from Aldrich . NMR data were recorded on either a 

Varian VXR (300 MHz, 20 °C) or a Bruker DRX (400 MHz, 25 °C) spectrometer. 

Chemical shifts were referenced to proton solvent impurities (6 7.15, CsDjH). UV-vis data 

were recorded on a HP8452A diode array spectrophotometer and reported as in nm 

(log €). Elemental analyses (C, H, N) were performed by Iowa State University Instrument 

Services. MS-CI studies were performed on a Finnigan TSQ 700 at 70 eV in the negative 

ion mode using ammonia as the ionization gas. GCMS studies were performed on a Varian 

gas chromatograph coupled to an ITS 40 ion trap mass spectrometer (capillary colunm DB-

5MS). 

(TTP)Ti=NNMe2,1. To a hexanes (ca. 20 mL) slurry of (TTP)TiCl2 (257 mg, 

0.326 mmol) was added piperidine (132 ^iL, 1.33 mmol) and HjNiMe^ (30 jiL, 0.388 mmol). 

The blue solution was filtered after stirring 12 h at ambient temperature and the solid was 

washed with hexanes (ca. 4 mL). This purple solid was divided into 3 approximately equal 

portions and each placed on a clean fritted filter and washed with 2 mL of benzene. The 

combined filtrates yielded dark blue (TTP)Ti=NNMe2 (118 mg, 47 % yield) and a trace of 

(TTP)Ti=0. 'H NMR (CsD ,̂ 300MHz): 9.16 (s, 8H, p-H), 8.20 (d, 4H, VH.H = 8 HZ, meso-

CtfljCHzX 8.04 (d, 4H, VH.H = 8 HZ, meso-C^S^n;), 7.31 (t, 8H, VH.H = 8 HZ, meso-

2.42 (s, 12H, meso-C^JCH^\ -0.28 (s, 6H, NN(C^3)2). UV/vis (toluene): 426 

(5.65), 548 (4.64). The hydrolytic sensitivity of 1 precluded satisfactory elemental analysis. 
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(TTP)Ti=NNPh2,2. A mixture ofHiNjPhj'HCl ( 234 mg, 1.06 mmoi), piperidine 

(173nL, 1.75 mmol), and 4A molecular sieves were stirred in hexanes (ca. 15 mL) overnight. 

This mixture was filtered over a pad of activated neutral alumina and the filtrate added to 

(TTP)TiCl2 (154 mg, 0.196 mmol) and piperidine (ca. 2 mmol). This solution slowly turned 

fi-om red/brown in color to dark red over 13 h, at which time it was filtered and the solid 

washed with hexanes (3x6 mL). The dark blue solid was placed on a clean fiitted filter and 

washed through with 2 mL benzene. The benzene was removed in vacuo to afford 

analytically pure (TTP)Ti=NNPh, (40 mg, 23% yield). 'H NMR (QD^, 300MHz): 9.13 (s, 

8H, P-H), 8.05 (d, 8H, VH.H = 8 Hz, meso-C^JO,lii), 7.28 (d, 8H, VH.H = 8 HZ, meso-

6.31 (m, 6H, 4.34 (d, 4H, ^H-H = » HZ, O-NN(C6^F5)2), 2.41(s, 

12H, meso-C^S^H .̂ MS Calcd (found): [M"^] 898.95 (898.3) m/z. AnaJ. Calcd (found) 

for CFIOH^NJi: C, 80.17 (79.97); H, 5.16 (5.24); N, 9.35 (8.49). UV/vis (toluene): 426 

(5.61), 547 (4.69). 

Reaction (TTP)Ti=NNMe2 with /7>chlorobenzaldehyde. An NMR tube was 

charged with complex 1 (12.8 mg, 9.90 nmol), p-chlorobenzaldehyde stock solution (7.0 

|AL, 1.726 M, 12.1 ^mol), PhjCH (89.0 NL, 0.1814 M, 16.14 ^mol) as an internal standard, 

and CDjClj (ca. 0.5 mL). Aiter allowing the mixture to stand overnight at ambient 

temperature, (TTP)Ti=0 (9.43 ^mol, 95%) and the hydrazone'° (7.74 ^mol, 82%) were 

detected. GCMS (p-chlorobenzaldehyde N,N-dimethylhydrazone): Calcd (found): [M"] 

182.65 (182) m/z. 

Reaction (TTP)Ti=NNPh2 with p-chlorobenzaldehyde. An NMR tube was 

charged with complex 2 (4.95mg, 5.51nmol),p-chlorobenzaldehyde stock solution (4.2 [iL, 
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1.726 M, 7.2S iimol), PhjCH (92.6 ^L, 0.1814 M, 16.78 ^mol) as an internal standard, and 

(ca. 0.6 mL). The mixture was allowed to stand at ambient temperature for 180 h at 

which time (TTP)Ti=0 (5.23 nmol, 95%) was observed. The hydrazone'' could not be 

quantified due to the interfering internal standard and porphyrin signals. GCMS of p-

chlorobenzaldehyde N,N-diphenylhydrazone Calcd. (found): [NT] 306.79 (307) m/z. 

Reaction (TTP)Ti=NTr with /r-chlorobenzaldehyde. An NMR tube was charged 

with complex 3, (TTP)Ti=N'Pr, (6.8 mg, 8.76 ^mol),/^-chlorobenzaldehyde (3.8 mg, 27 

limol), PhjCH (93.5 |iL, 0.1743 M, 16.30 nmol) as an internal standard, and CDCI3 (ca. 0.6 

mL). Allowing the tube to stand at ambient temperature for 20 h produced (TTP)Ti=0 

(8.94 nmol, 102 %) and the 'PrN=CH(CfiH4-p-Cl) (8.98 ^mol, 103 %). GCMS ofp-

chlorobenzylidene isopropylamine Calcd (found): [M^] 181.66 (182) m/z. ^HNMR 

(CDCI3): 8.25 (s, IH, Nff), 7.65 (d, 2H, ClC^/fJ, 7.36 (d, 2H, ClCg/fJ, 3.54 (m, IH, 

NC/r(Me)2), 1.26 (d, 6H, NCH(Me)2). 

Reaction (TTP)Ti=NNMe2 with phenol. An NMR tube was charged with complex 

1 (7.3 mg, 9.43 nmol), phenol (16 jiL, 1.23 M, 19.68 ^mol), PhjCH (96.0 fiL, 0.1743 M, 

16.73 ^mol) as an internal standard, and C«D« (ca. 0.6mL). Complex 1 was consumed 

within approximately five minutes to produce (TTP)Ti(0Ph)2 (9.48 nmol, 101%) and 1,1-

dimethylhydrazine (9.83 ^imol, 104%). 

Reaction (TTP)Ti=NNPh2 with phenol. An NMR tube was charged with complex 

2 (6.63 mg, 7.37 ^irnol), PhOH (16.2 jiL, 1.23 M, 19.9 jimol), PhjCH (92.0 nL, 0.1743 M, 

16.04 ^mol) as an internal standard, and C«Dg (ca. 0.6 mL). Complex 2 was consumed 

within approximately five minutes to produce (TTP)Ti(OPh), (7.11 jimol, 96%) and 1,1-
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diphenylhydrazine (7.82 ^mol, 106%). 

Reaction (TTP)Ti=NTr with piienoi. An NMR tube was charged with imido 

complex 3 (1.4 mg, 1.81 ^mol), PhOH (3.6 pL, 1.23 M, 4.43 nmol), PhjCH (89.0 jiL, 

0.1448 M, 12.89 ^moi) as an internal standard, and (ca. 0.6 mL). Allowing the 

solution to stand at ambient temperature for 21 h produced (TTP)Ti(0Ph)2 (1.68 ^imol, 93 

%). 

Reaction (TTP)Ti=NNMe2 water. An NMR tube was charged with complex 

1 (2.61 mg, 3.37 jimol), H,0 (0.4 nL, 22 nmol), PhjCH (54.0 ^L, 0.1743 M, 9.41 ^imol) as 

an internal standard, and (ca. 0.6 mL). Complex 1 was consumed within 

approximately five minutes to produce (TTP)Ti=0 (3.48 jimol, 103%) and 1,1-

dimethylhydrazine (3.34 nmol, 99%). 

Reaction (TTP)Ti=NNPh2 with water. An NMR tube was charged with complex 

2 (8.54 mg, 9.50 ^mol), H,© (0.4 nL, 22 ^mol), PhjCH (50.0 nL, 0.1743 M, 8.72 nmol) as 

an internal standard, and CgDg (ca. 0.6 mL). After allowing the tube to stand at ambient 

temperature for 44 h (TTP)Ti=0 (9.44 nmol, 99%) was detected by 'H NMR. The fi'ee 

hydrazine was not quantified due to decomposition. 

Reaction of (TTP)Ti=NTr with nitrosobenzene. An NMR tube was charged with 

(TTP)Ti=N'Pr (4.61 mg, 5.96 nmol), PhNO (0.8 mg, 7.47 mmol), PhjCH (91.0 |iL, 0.1448 

M, 13.18 ^mol) as an internal standard, and (ca. 0.6 mL). After approximately five 

minutes at ambient temperature quantitative production of (TTP)Ti=0 and PhN=N'Pr^* was 

observed. GCMS of PhN=NTrCalcd. (found): |>r] 148.21(149) m/z. NMR PhN=N'Pr 

(CDCI3): 7.35 (t, 2H, OT-/>/iNNTr), 7.19 (t, IH,P-PHNN'PT), 6.68 (d, IH, o-PANNTr), 3.88 
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(spt, IH, PhNNiV), 1.24 (d, 6H, Phm'Pr). 

Results and Discussion 

Synthesis and properties of hydrazido(2-) complexes. Treatment of the dichloro 

complex, (TTP)TiCl2, with a 1,1-disubstituted hydrazine in hexanes in the presence of a base 

afifords the hydrazido complexes (TTP)Ti=NNR2 (R = Me, 1; Ph, 2) (eq 1). In the absence 

CI NNR, 
N 

+ I +2 piperidine • Ti ^ + 2 piperidine "HCl (1) 

CI H H 

of a base, a 1:1 ratio of the hydrazido complex, 1, and the 1,1-dimethylhydrazonium salt is 

observed in the 'H NMR spectrum of the reaction mixture. It was not possible to cleanly 

separate the two products in large scale reactions. When bases such as triethylamine, 

picoline, pyridine, 1,2,3,4-tetrahydroquinoline, and 2,2,6,6-tetramethylpiperidine were used, 

the solubilities of the hydrazido complexes and the anunonium salts were similar and 

impeded purification. Piperidine was found to be an adequate, but not ideal base as 

separating the piperidinium salt from the product still proved difficult and resulted in modest 

isolated yields (20-50 %) of the hydrazido complexes. Alternate routes, such as the use of 

LiNHNR, or HzNjRj in the presence of Li"Bu as well as other reaction solvents, led only to 

intractable, paramagnetic products. Attempted synthesis of a diazenoid species from 1,2-

diphenylhydrazine in the presence of piperidine also led to intractable paramagnetic 

products. Although complex 2 is robust in solution at elevated temperatures (ca. 350 K), 

complex 1 is not and decomposed to paramagnetic species, as indicated by NMR 
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spectroscopy. 

Due to the large ring current of the porphyrin macrocycle, the 'H NMR resonances 

associated with the substituents on the bound hydrazido ligand are significantly shifted 

upfield relative to the hydrazine. For complex 1, the methyl resonance is shifted upfield 

approximately 2.S ppm from that of the free hydrazine. The phenyl signals for complex 2 are 

similarly shifted upfield. For example, the o-NNPAj proton doublet found for 2 (4.34 ppm) 

is shifted upfield from the free hydrazine (7.11 ppm). The 'H NMR spectra show that the 

substituents on the hydrazido(2-) moiety are equivalent on the NMR time scale (223-300 K). 

This observation supports the formulation of the hydrazido(2-) unit as an //-bound ligand. 

In the presence of water or phenol, both complexes 1 and 2 undergo metathesis to 

form (TTP)Ti=0 or (TTP)Ti(0Ph)2, respectively, and the appropriate 1,1-disubstituted 

hydrazine (eq 2, 3).'^ As is generally the case for hydrazido complexes, N-N bond 

NNR, 

+ 2H2O 

O 

(2) 

R = Me,Ph 

OPh 

+ 2H0Ph + H,N,R (3) 

OPh 
R = Me,Ph 

cleavage was not observed in these hydrolysis reactions. The extreme hydrolytic 

susceptibility of complex 1 precluded a satisfactory elemental analysis while complex 3 was 

found to be somewhat more inert. In the presence of approximately one equivalent of 
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phenol, a 1:1 mixture of the bis(phenoxide), (TTP)Ti(0Ph)2, and unreacted hydrazido, 

complex 2, were present. This finding may be attributed to the basic behavior of the 

hydrazido(l-) moiety, NHNPhj', or a trans influence of the phenoxide as has been exhibited 

before with mixed alkoxido complexes, (TTP)Ti(OR)(OR')."'' 

Exchange of the NNRj group was not observed upon treatment of (TTP)Ti=NNR2 

with free hydrazine H2N2R'2 (R = Me, R' = Ph; R = Ph, R' = Me). In accord with acid/base 

considerations, the protonation of complexes 1 and 2 was not detected in the presence of 

excess HNPhz or HjNPh. The potentially direct route to complexes 1 and 2 by treatment of 

the imido compound, 3, with the respective hydrazine was unproductive. The hydrazido and 

imido complexes were only minor components in an otherwise intractable mixture of 

products. 

Treatment of complexes 1 or 2 with approximately 1 equivalent ofp-

chlorobenzaldehyde slowly produced the hydrazone, /?-Cl-C6H4C(NNR2)H (R = Me, Ph), 

and (TTP)Ti=0 in nearly quantitative yield as monitored by 'H NMR spectroscopy (eq 4). 

Reactions with a larger ratio of the aldehyde to hydrazido complex proceed to completion 

over a shorter period of time. The reaction rate of the diphenylhydrazido complex 2 with 

aldehyde is qualitatively slower than that of the dimethyl analogue 1. This is consistent with 

a less nucleophilic of the hydrazido moiety in complex 2. 

NNR 

(4) 

R = Me,Ph CI CI 



www.manaraa.com

45 

Reactivity of (TTP)Ti=N^. Although (TTP)Ti=NTr, 3, did not undergo nitrene 

transfer in the presence of a variety of substrates such as OPR3, OAsPhj, RNCNR, and 

RjCO, it will undergo nitrene metathesis reactions with nitroso compounds. Facile and 

quantitative production of the unsynmietric diazene compound PhN=N'Pr results from 

reaction of complex 3 with nitrosobenzene (eq S). Low-valent titanium complexes have 

been found to mediate the coupling of nitrene groups derived from nitroso compounds."-'® 

It was proposed that these reactions progressed through two different bimetallic 

intermediates in order to explain the presence of azo- and azoxy-coupling products. In the 

case presented here we conclude that the diazene product is the result of a monomeric 

intermediate in which the nitrosobenzene is bound to the titanium cis to the imido group. 

The nucleophilic character of nitrene groups has often been displayed by reaction with 

aldehydes.'' Likewise, reaction of complex 3 with excess /?-chlorobenzaldehyde at 20°C 

produced (TTP)Ti=0 and p-chlorobenzylidene isopropylamine in 20 hours. In the presence 

of only one equivalent of aldehyde, complete consumption of the imido complex required 

approximately four weeks. 

NlH- O 

+ PhNO (5) 

Conclusion 

The (TTP)Ti=NNR2 complexes have been investigated in an effort to further 

elucidate the reactivity of the titanium-nitrogen double bond found in metalloporphyrin 
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complexes. The hydrazido complexes exhibited similar behavior to that of the imido species 

(TTP)Ti=Nl*r in the presence of protic reagents. Nitrene group transfer from the titanium 

imido complex, (TTP)Ti=NTr, is facilitated by treatment with /;-chlorobenzaldehyde or 

nitrosobenzene to yield the respective imine or diazene. The hydrazido derivatives also 

undergo reaction with /7-chlorobenzaldehyde to form the subsequent hydrazone. These 

resuhs show that by reducing the steric constraint at the of the nitrene group, the 

metalloporphyrin Ti=N moiety exhibits moderate nucleophilic reactivity. 
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CHAPTER 4: ATOM TRANSFER REACTIONS OF (TTP)Ti(7^-3-HEXYNE): 

SYNTHESIS AND MOLECULAR STRUCTURE OF 77l4^S'-(TTP)Ti[OP(Oct)3]2 

A paper to be submitted to Inorganic Chemistry 

Joseph L. Thorman, Victor G. Young, Jr.^ and L. Keith Woo* 

Abstract 

Atom and group transfer reactions were found to occur between heterocumulenes 

and (TTP)Ti(7/^-3-hexyne), 1, (TTP = /ne5o-5,10,15,20-tetra-/?-tolyiporphyrinato dianion). 

The imido derivatives (TTP)Ti=NR (R = Tr, 2; "Bu, 3) were produced upon treatment of 

complex 1 with 'PrN=C=N'Pr, TrNCO, or BuNCO. Reaction between complex 1 and CSj, 

'BuNCS, or BuNCSe afforded the chalcogenido complexes, (TTP)Ti=Ch (Ch = Se, 4; S, 5). 

Treatment of complex 1 with 2 equivalents of PEtj yielded the bis(phosphine) complex, 

(TTP)Ti(PEt3)2, 6. Although (TTP)Ti(;r-3-hexyne) readily abstracts oxygen from epoxides 

and sulfoxides, the reaction between 1 and 0=P(0ct)3 did not result in oxygen atom transfer. 

Instead, the paramagnetic titanium(II) derivative (TTP)Ti[OP(Oct)3]2, 7, was formed. The 

molecular structure of complex 7 was determined by single-crystal X-ray diffraction; Ti-O 

distance 2.080(2) A, Ti-O-P angle of 138.43(10)°. Estimates of Ti=0, Ti=S, Ti=Se, and 

Ti=NRbond strengths are discussed. 
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Introduction 

New insight concerning atom transfer reactions have emerged in the past few years. 

However, relatively few systematic studies involving transfer of multivalent atoms or groups 

to transition metal compounds have been conducted due to the lack of suitable, well-behaved 

low-valent metal acceptor complexes. An exemplary case was reported by Mayer involving 

oxidative addition and group transfer reactions with WCl2(PMePh2)4.' From this study the 

W=0 bond strength was estimated to be 2 138 kcal/mol. Similarly, rhenium-oxygen bond 

strengths have also been addressed." In related group 4 transition metal complexes the large 

free energy barrier to oxygen atom abstraction from titanium(IV) 0x0 complexes is well 

known.' Consequently Ti^^ is an effective reducing agent and atom transfer acceptor. This 

was recently demonstrated in a previous study of Ti(n), where (TTP)Ti(Ti^-3-hexyne), 1, 

was able to abstract oxygen and sulfur from a number of substrates."* This reactivity is 

unique and has not been reported for other divalent titanium compounds.^ In this report, 

further chemistry of Ti(II) is described. Using new atom transfer reactions, estimates for the 

Ti=X multiple bond strengths are derived. 

Experimental 

General Procedures. All manipulations were performed under an inert atmosphere 

of nitrogen using a Vacuum Atmospheres glovebox equipped with a Model MO-40M Dri-

Train gas purifier. Benzene-J^, toluene, and hexane were freshly distilled from purple 

solutions of sodium benzophenone and brought into the glovebox without exposure to air. 

(TTP)Ti(7^-3-hexyne)'' and "BuNCSe® were prepared according to published procedures. 
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Compounds 'BuNCO and "BuNCS were purchased from Aldrich, vacuum distilled, and dried 

by passage through a column of activated, neutral alumina. CSj was purchased from Fisher 

Scientific, vacuum distilled, and dried over molecular sieves. The magnetization of 2 was 

measured at a field of 3 Tesla over the range 6 - 296 K on a Quantum Design MPMS 

SQUID magnetometer. Corrections for the diamagnetic molar susceptibility were 

implemented for the porphyrin (-731 x 10"^ cgs/mol)' and 0=P(0ct)3 (-302.7 x 10"^ 

cgs/mol).* 'H NMR data were recorded on either a Varian VXR (300 MHz, 20''C) or 

Bruker DRX (400 MHz, 25 "C) spectrometer. Chemical shifts were referenced to proton 

solvent impurities (8 7.15 ppm, CgDjH). UV-vis data were recorded on a HP8452A diode 

array spectrophotometer and reported as in nm Oog e). Elemental analyses were 

performed by Iowa State University Instrument Services. 

(TTP)Ti=NTr, 2. Method A. Isopropylisocyanate (44 ^L, 0.448 mmol) was 

added to a stirred solution of 1 (304 mg, 0.380 mmol) in toluene (ca. 10 mL). After 1 h at 

ambient temperature the dark blue solution was filtered and the fihrate reduced to dryness in 

vacuo. Recrystallization at -25 "C for one day from a toluene solution (8 mL) layered with 

heptane (4 mL) afforded analytically pure product (128 mg, 44% yield). UV/vis (toluene): 

549 (4.53), 424 (5.57), 399 (shoulder, 4.70). 'H NMR (CgD^, 400 MHz); 9.24 (s, 12H, ^ 

pyrrole), 8.27 (d, 4H, meso-CfiJCR ,̂ 8.05 (d, 4H, meso-CfiJCR ,̂ 7.31 (t, 8H, meso-

CJIJZU;), 2.42 (s, 12H, meso-C^^CH^), -0.45 (m, IH, -NCZ/Mej), -1.66 (d, 6H, -

NCHMJJ). Anal. Calcd. for CsiH^jNjTi; C, 79.16; H, 5.60; N, 9.05. Found: C, 78.72 ; H, 

5.67 ; N, 8.73. Method B. An NMR tube equipped with a teflon stopcock was charged 

with complex 1 (14.3 mg, 17.8 ^mol), PhjCH (89.5 ^L of0.1455 M in CsDg, 13.0 |imol). 
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TrN=C=NTr (3.2 jiL, 20.4 nmol), and CgDs (ca. 0.6 mL). The solution immediately 

darkened and the imido complex (TTP)Ti=NTr (14.2 iimol, 79% yield) had formed over 12 

h at ambient temperature. 'H NMR (CgD^, 300MHz): TrNC: 2.84 (spt, IH), 0.65 (d, 6H). 

The 'H NMR spectrum of (TTP)Ti=N'Pr was identical to that reported in Method A. 

Reaction of complex 1 with TrNCO. An NMR tube equipped with a teflon 

stopcock was charged with complex 1 (13.1 mg, 16.4 iimol), Ph3CH (92.0 |iL, 0.146 M, 

13.4 ^mol), PrNCO (2.60 )iL, 26.5 ^imol), and CgDg (ca. 0.6 mL). Within 5 minutes 

(TTP)Ti=N'Pr (16.6 lamol, 100 % yield) was produced. 'H NMR (CgDs, 300MHz): 

(TTP)Ti=N'Pr: 9.24 (s, 12H, yS^pyrroIe), 8.27 (d, 4H, /wew-Cfi/Z^CHj), 8.05 (d, 4H, meso-

C5//4CH3), 7.31 (t, 8H, mesO'Ceff.CHj), 2.42 (s, 12H, meso-CeH.C/fj), -0.45 (m, IH, -

NC/ZMej), -1.66 (d, 6H, -NCHA/gj)-

Reaction of complex 1 with 'BuNCO. An NMR tube equipped with a teflon 

stopcock was charged with complex 1 (5.93 mg, 7.43 ^unol), PhjCH (84.0 fiL, 0.181 M, 

15.2 jimol), BuNCO (1.2 ^L, 10.5 nmol), and CgDg (ca. 0.6 mL). Within 5 minutes 

(TTP)Ti=NBu was produced in 48% yield. Allowing the solution to stand at 25° C for 16 h 

produced (TTP)Ti=N'Bu (7.39 |4,mol, 99% yield) as the only observable diamagnetic 

porphyrin species. The 'H NMR is identical to the literature spectrum for (TTP)Ti=N'Bu:' 

9.24 (s, 12H, /^-pyrrole), 8.32 (d, 4H, meso-Ceff^CHj), 8.04 (d, 4H, meso-Cgff^CHj), 7.34 

(d, 4H, meso-Csff^CHj), 7.30 (d, 4H, meso-Cgff.CHj), 2.42 (s, 12H, meso-CeH^Cffj), -1.58 

(s, 9H, -N'5tf). CO was detected in a separate experiment with a Kratos MS50TC. Calc. 

27.99491 m/z, found 27.99491 ± 0.0028 m/z. 
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Reaction of complex 1 with CS2. An NMR tube equipped with a teflon stopcock 

was charged with complex 1 (12.2 mg, 15.3 ^mol), PhjCH (85.0 |iL, 0.181 M, 15.4 lomol), 

CSj (1.2 jiL, 20.0 iimol), and CjDg (ca. 0.6 mL). Heating the solution at 80°C for 112 h 

produced (TTP)Ti=S (12.5 ^mol, 82% yield). 'H NMR (C^Dfi, 300 MHz) (TTP)Ti=S:'^ 

9.29 (s, 8H, /?-H), 8.14 (d, 4H, meso-C^JZn;), 7.95 (d, 4H, meso-C^JCXi;), 7.30 (m, 8H, 

meso-C^JCR^), 2.41 (s, 12H, meso-C^^CH;). 

Reaction of complex 1 with (MeO)2SO. An NMR tube equipped with a teflon 

stopcock was charged with complex 1 (6.3 mg, 7.7 (omol), PhjCH (90.5 ^L, 0.145 M, 13.1 

limol), (MeO)2SO (1.7 (iL, 20.0 fimol), and (ca. 0.6 mL). Within 5 minutes all of the 

3-hexyne had been displaced and a small amount of (TTP)Ti=0 was present. Allowing the 

solution to stand at 25°C for 96 h produced (TTP)Ti=0 in 43 % yield. 'H NMR (CgDg, 300 

MHz): (TTP)Ti=0:^° 9.24 (s, 12H, yS-pyrrole), 8.00 (d, 8H, meso-C^^Ca{), 12% (d, 8H, 

/wwo-Cfi^.CHj), 2.42 (s, 12H, meso-C^^CH^). 

Reaction of 1 with 'BuNCS. An NMR tube equipped with a teflon stopcock was 

charged with 1 (10.65 mg, 13.33 jimol), PhjCH (92.5 nL, 0.146 M, 13.46 ^mol), BuNCS 

(2.8 nL, 22.07 ^mol), and QDg (ca. 0.6 mL). Upon allowing the solution to stand at 25''C 

for 13 h (TTP)Ti=S (12.94 nmol, 97% yield) was produced. 'H NMR (CsD^, 300 MHz): 

"BuNC; 0.86 (s, 9H); (TTP)Ti=S:^ 9.29 (s, 12H, yff-pyrrole), 8.14 (d, 4H, meso-CfiJCR^\ 

7.95 (d, 4H, meso-C^JCR^), 7.30 (m, 8H, meso-CfijCa;), 2.41 (s, 12H, meso-C^S-H;). 

Reaction of 1 with 'BuNCSe. An NMR tube equipped with a teflon stopcock was 

charged with 1 (12.27 mg, 15.36 iimol), PhjCH (95.0 jiL, 0.146 M, 13.82 |imol), "BuNCSe 
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4 h at which time 'BuNC (14.73 ^mol) and (TTP)Ti=Se (15.20 ^mol, 99% yield) were 

observed. Further monitoring of the sample revealed that after all the (TTP)Ti=Se was 

formed, (TTP)Ti(7^-Se2) was being produced by the reaction between (TTP)Ti=Se and 

excess BuNCSe. 'H NMR (QD^, 300 MHz): (TTP)Ti=Se:'^ 9.31 (s, 8H, /?-H), 8.18 (d, 

4H, meso-C^JCtii), 7.95 (d, 4H, meso-CJIjCii;), 12% (m, 8H, meso-Cfi^CH^), 2.41 (s, 

12H, meso-C^S^H^). BuNC: 0.86 (s, 9H). (TTP)Ti(7^-Se2): 9.08 (s, 8H, /?-H), 8.15 (d, 

4H, meso-C^jCR;), 7.89 (d, 4H, meso-C^JCRi), 7 26 (m, 8H, 2.39 (s, 

12H, meso-C^JCH^. At early times an intermediate was observed: 'H NMR (CfiDg, 300 

MHz) [(TTP)Ti(;f-'BuNCSe)]: 9.01 (s, 8H, p-Y£), 8.43 (d, 4H, meso-CfijCRy), 7.96 (d, 

4H, meso-CfiJC^;), 7.29 (dd, 8H, meso-CfflJCYi;), 2.39 (s, 12H, mejo-QH^C/Zs), -0.52 (s, 

9H, 7^-'5i/NCSe). 

Reaction of 1 with Cy3P=S. An NMR tube equipped with a teflon stopcock was 

charged with 1 (8.9 mg, 11.12 ^rniol), PhjCH (92.5 [iL, 0.146 M, 13.46 nmol), Cy3P=S (4.0 

mg, 12.8 ^mol), and CgDg (ca. 0.6 mL). After = 5 minutes (TTP)Ti=S (1.47 ^mol, 13% 

yield) and 1 (6.96 ^mol) were present. 'HNMR (CgDg, 300 MHz): (TTP)Ti=S:''* 9.29 (s, 

12H, >S-pyrrole), 8.14 (d, 4H, meso-C^^C^i3), 7.95 (d, 4H, meso-C^^CH^), 7.30 (m, 8H, 

meso-C^.CH^X 2.41 (s, 12H, meso-C^^CH^). 

(TTP)Ti(PEt3)2,6. A stirred solution of complex 1 (230 mg, 0.287 mmol) in 

toluene (ca. 10 mL) was treated with PEt3 (120 nL, 0.812 mmol). After stirring for 1.5 

hours at ambient temperature, the solution was filtered and the filtrate reduced to dryness in 

vacuo. The residue was recyrstallized from a toluene/hexanes (2:1) solution that was 
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allowed to stand at -25 °C for one day which produced analytically pure black crystals of 

complex 6 in two crops (145 mg, 53 % yield). UV/vis (toluene): 553(4.45), 426 (5.53), 406 

(shoulder, 2.61). 'H NMR (CA. 400MHz): 11.50 (bd, 12H, J = 7 Hz, P(C/f2CH3)3, 7.22 

(bs, 18H, P(CH2C//3)3), 6.14 (d, 8H, J = 8 Hz, meso-Ceff^CHj), 4.82 (d, 8H, J = 8 Hz, 

iweso-Cg^4CH3), 1.47 (s, 12H, meso-C^J^^, -5.92 (bs, 8H, >?-pyrroIe). Anal. Calcd. for 

CfioH^N^PjTi: C, 75.62; H, 6.98; N, 5.88. Found: C, 75.75; H, 7.35; N, 5.80. 

(TTP)Ti[OP(Oct)3l2, 7. A round bottom flask was charged with complex 1 (364 

mg, 0.455 mmol) and 0=P(0ct)3 (362 mg, 0.935 mmol). Upon addition of toluene (ca. 15 

mL), the stirred solution became dark blue. The solution was concentrated in vacuo after 

2.5 h to a black oil (ca. 1 mL). This oil was redissolved in hexanes (ca. 24 mL) and then 

reduced in vacuo to 4 mL and cooled to -25 °C for one day which produced analytically pure 

black crystals of complex 7 (355 mg, 52% yield). UV/vis (hexane): 550 (2.14), 422 (5.69), 

403 (shoulder, 2.98). 'HNMR(C6D6. SOOMHz): 12.11 (bs, 12H, 10.27 (bs, 12H, 

3-C//2), 8.72 (d, 8H, meso-CJI^CHs), 4.65 (bs, 12H, 4-CH^, 4.55 (s, 12H, meso-CeHiCH^), 

3.03 (bs, 12H, 5-CH2), 2.02 (bs, 12H, 6-0/^2), 1.33 (bs, 12H, 1.18 (bs, 18H, 8-

CH3), -0.43 (d, 8H, meso-C^Ff^CHi), -33.0 (bs, 8H, y0^pyrrole). ^^P NMR (QD^, 200 MHz): 

83.5 ppm, referenced to internal H3PO4 (0.00 ppm). (Free 0=P(0ct)3, -31.8 ppm) Anal. 

Calcd. for C«Hi3,N402P2Ti: C, 77.39; H, 9.34; N, 3.76. Found: C, 76.89; H, 9.06; N, 3.08. 

Structure Determination of (TTP)Ti(PEt3)2,6 and (TTP)Ti[OP(Oct)3]2) 7. 

Crystallographic data for complexes 6 and 7 are found in Appendix A. A crystal of complex 

7 was attached to a glass fiber and mounted on a Siemens SMART system for data 

collection at 173(2) K. Final cell constants were calculated from a set of 8192 strong 
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the actual data collection. The space group Yljn was determined from systematic absences 

and intensity statistics." A successfiil direct-methods solution was calculated which 

provided most non-hydrogen atoms from the E-map. Several full-matrix least 

squares/difference Fourier cycles were performed which located the remainder of the non-

hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms 

with relative isotropic displacement parameters. Complex 6 was treated in an analogous 

manner. A crystal of complex 6 was attached to a glass fiber and mounted on a Bruker 

CCD-1000 diffractometer for data collection at 173(2) K. A total of28087 data were 

harvested by collecting four sets of frames with 0.3 ° scans in co with an exposure time of 90 

sec per frame. These highly reduntant datasets were corrected for Lorentz and polarization 

effects. The absorption correction was based on fitting a function to the empirical 

transmission surface as sampled by multiple equivalent measurements.'^ Final cell constants 

were calculated from a set of 6649 strong reflections from the actual data collection. The 

space group PT was determined from systematic absences and intensity statistics.'^ A 

successful direct-methods solution was calculated which provided most non-hydrogen atoms 

from the E-map. Several full-matrix least squares/difference Fourier cycles were performed 

which located the remainder of the non-hydrogen atoms. Due to poor quality of the 

diffraction data all atoms were refined with isotropic displacement coefficients. All 

hydrogen atoms were included in the structure factor calculation at idealized positions and 

were allowed to ride on the neighboring atoms with relative isotropic displacement 
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coefiBcients. There are two symmetry independent half molecules of complex 6 in the 

asymmetric unit. These half molecules occupy crystallographic inversion centers. 

Results 

Reactivity of (TTP)Ti(T)^-3-iiexyne) with 'PrNCO, "BuNCO, and 'PrN=C=NTr. 

Quantitative nitrene group transfer, as monitored by 'H NMR spectroscopy, resulted from 

treatment of (TTP)Ti(;f-3-hexyne), 1, with TPrNCO or 'BuNCO. This occurred within 5 

minutes by facile displacement of 3-hexyne and production of the imido complex 

(TTP)Ti=NR (R = Tr, 2, Bu, 3) (eq 1). The formation of CO was confirmed by high-

is ̂ Bu 

'PrN=C=N'Pr 9 . . 'BUNCO ^ 
(TTP)Ti(7-3-hexyne) —.• ( Ti ) rn 

-'PrNC -CO ^ V W 
- 3-hexyne - 3-hexyne 

resolution mass spectrometry (found; 27.99491 ± 0.0028 m/z; calcd.: 27.99491). Over the 

course of these reactions, intermediate substitution products were not observed. Due to 

mechanical losses, complex 2 was isolated in 44% yield. The isopropyl imido complex 2 

could also be prepared by treatment of 1 with 1,3-diisopropylcarbodiimide although mass 

balance was not realized during spectroscopic monitoring. In this case the yield of imido 

complex (TTP)Ti=NTr, 2, was only 79 % as measured by NMR. The isocyanide side 

product, TrNC, can also displace the alkyne from (TTP)Ti(7f-3-hexyne) to form a 

paramagnetic, 'H NMR silent bis(isocyanide) complex, (TTP)Ti('PrNC)2. However, 

treatment of the sample with excess pyridine in an attempt to convert any NMR silent 
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porphyrin species to the NMR active complex (TTP)Ti(py)2, did not reveal additional Ti 

complexes. 

Despite the reduced steric bulk of the isopropyl group, the imido is quite air- and 

water-stable in comparison to previous titanium metalloporphyrin derivatives. For example, 

(TTP)Ti=NBu, 3, was hydrolized within minutes on exposure to moisture to form free 

amine and (TTP)Ti=0. In contrast, the isopropyl complex, 2, required hours to undergo 

complete hydrolysis. 

Reactivity of (TTP)Ti(;f-3-hexyne) with "BuNCSe, "BuNCS, and CS2. 

Quantitative displacement of the 3-hexyne was observed by 'H NMR within minutes upon 

addition of BuNCSe to (TTP)Ti(;;^-3-hexyne). In addition to the appearance of the terminal 

selenido complex, (TTP)Ti=Se, 4, an additional set of sharp porphyrin signals was detected 

at early times (eq 2). The ratio of complex 4 to the new intermediate was 1:9 after 

approximately S minutes. Associated with this new transient complex was a 9-proton singlet 

at -0.S2 ppm. This signal is downfield from the 'Bu resonance of the imido species, 

(TTP)Ti=NBu, by over 1 ppm. An Tf-C,St bound isoselenocyanate, (TTP)Ti(7^-'BuCNSe) 

is the most reasonable formulation for this intermediate. At 20°C the intermediate is slowly 

converted over 4 hours to complex 4 (99% NMR yield) and "BuNC. Treatment of the 

hexyne complex 1 with 'BuNCS proceeded somewhat faster to form the terminal 

RNCCh 

RNC 

:h 

(2) 
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chalcogenido (TTP)Ti=S (95% NMR yield after =15 min). An additional set of broad, 

transient NMR signals (Av,^ = 16 Hz) was detected which had experimentally similar 

chemical shifts to that for (TTP)Ti(;^-'BuCNSe). This species was therefore assigned as an 

7^-C,S adduct, (TTP)Ti(;7'-'BuNCS). 

Heating a benzene-f/g solution of 1 in the presence of = 1.25 eq CS2 at 80°C for 

112 h produced (TTP)Ti=S, 5, in 87 % yield by NMR. This reaction proceeds with the 

formation of at least 5 intermediate titanium porphyrin species, indicated by the number of fi-

pyrrole signals in the 'H NMR spectrum. 

Synthesis of (TTP)Ti(PEt3)2,6. Although no reaction was observed between 

(TTP)Ti( 77^-3-hexyne) and NEtj, N(0ct)3 or P(0ct)3, treatment with PEtj rapidly afforded 

the bis(phosphine) adduct (TTP)Ti(PEt3)2, 6, in 53 % isolated yield (eq 3). This reaction is 

quantitative by NMR. Although 6 is paramagnetic, its 'H NMR signals are relatively sharp 

and integrations are sufficient for determining the metaliligand stoichiometry. For example, 

the /^pyrrole resonance integration is 8 protons relative to the 18-H methyl signals for the 

two PEt3 ligands. The coordination environment of titanium was found to contain trans-

PEtj groups by X-ray diffraction despite poorly diffracting crystals.'^ Phosphorus signals for 

the PEt3 groups were not observed in the '*P NMR spectrum. 

Synthesis and Structure of (TTP)Ti[OP(Oct)3]2,7. Trioctylphosphine oxide 

readily displaced 3-hexyne fi-om complex 1 within 5 minutes to produce the bis(phosphine 

3-hexyne 
2 PEt 3 

PEt 

(3) 

PEt3 
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oxide) adduct, (TTP)Ti[OPfOct)3]2, 7 (eq 4). The significant solubility of this compound in 

hexane prevented isolated yields higher than 52 %. However, this reaction proceeded nearly 

quantitatively (93 %) in an NMR tube experiment with an internal standard. Assignment of 

this complex as a bis(phosphine oxide) adduct was facilitated by 'H NMR spectroscopy. 

^ OPOctj 

w 

OPOctj 

The /^-carbon methylene resonance (12.11 ppm) integrates as 12 protons for two 0P(0a)3 

groups relative the 12 proton methyl resonance (4.55 ppm) of the porphyrin tolyl groups. 

The chemical shift for complex 7 is significantly deshielded relative to free OPOcts. 

Similar behavior has been observed in other phosphine oxide adducts, although to a lesser 

extent.'' 

Complex 7 was found to crystallize in the highly symmetric space group P2,/n. 

Consequently, the titanium resides in an octahedral coordination environment with the 

pyrrole nitrogens in the equatorial plane and the 0P(0ct)3 ligands occupying the axial 

positions (Figure 2). A number of Ti(rV) complexes containing 0-bound phosphine oxide 

ligands have been crystallographically characterized," but there appears to be only one Ti(II) 

compound containing Ti-0 bonds. The Ti-0 bond distances in complex 7 (2.080(2) A) are 

significantly longer than the Ti-0 single bond distances observed for Ti(OPh)2(l,2-

bis(dimethylphosphino)ethane)2 (1.891(6), 1.930(6) A).'® The tetravalent imido complex, 

TiCl2(=NBu)(OPPh3)2, possesses Ti-0 bonds of2.008(6) and 2.047(6) A and Ti-O-P angles 
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Figure I. ORTEP representation of (TTP)Ti(OPOct3)2. Thermal ellipsoids drawn at the 50% probability level. 
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of 159.2(4)° and 154.6(4)°.'^ The Ti-O-P angle of 138.43(10)° in complex 7 is surprisingly 

acute in light of the expected steric interaction between the octyl groups and the porphyrin 

macrocycle. This appears to be the most acute M-O-P bond angle observed for a 

monodentate phosphine oxide-transition metal complex.*^ " Although there are 

crystallographically characterized transition metal analogues in a variety of oxidations states 

and coordination environments, there is no clear trend with M-O-P bond angles." The Ti-0 

vector in complex 7 is canted with respect to the normal of the N4 plane by 6° which results 

in a Ti-P distance of 3.365 A. This is well outside of an ;;^-bonding interaction. The O-

P bond distance in 7 (1.513(2) A) is comparable to those of free phosphine oxides (1.490-

1.498 A).^' The 0P(0ct)3 moiety in 7 is perhaps best described by the limiting phosphonium 

representation, A waving distortion^ is observed in the deviations from the mean 

plane containing the 24-atom porphyrin core and titanium [Ti (3), N1 (3), N2 (-15), CI(-3), 

C2 (-4), C3 (2), C4 (6), C5 (7), C6 (-5), C7 (0), C8 (1), C9 (-4), CIO (10 pm) ]. Although 

there are no short intermolecular contacts, the waving distortion and relatively small Ti-O-P 

angle may result from the bulky 0P(0ct)3 groups. Two of the octyl groups extend linearly 

and lie in a coplanar manner to the porphyrin. The third octyl group achieves similar spacing 

relative to the porphyrin by rotation around the C33-C34 bond. Presumably, a more linear 

Ti-O-P angle would disrupt this efiBcient packing arrangement. The pyrrole nitrogen, N2, 

which is eclipsed by the Ti-O-P unit, follows the canting of the Ti-0 vector and is above the 

porphyrin plane by 0.15 A. 

The variable temperature magnetic behavior found for complex 7 is displayed in 

Figure 2. At 296 K the magnetic moment is 1.60 jig and falls smoothly to 0.66 HB at 51 K. 
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Figure 2. Magnetic moment vs. temperature plot for complex 7. 

This behavior is analogous to that of (TTP)Ti(4-picoline)2.'** These values are much lower 

than the spin-only value of 2.83 for two unpaired electrons. 

Discussion 

Group and Atom Transfer Reactions. The porphyrin macrocycle serves as a 

robust framework for studying group and atom transfer reactions of transition metal 

complexes.^^ This is particularly true in cases where multi-electron redox processes are 

involved. The porphyrin ligand prevents severe structural reorganizations that typically 

accompany large changes in the formal metal oxidation states. Our development of low-

valent Ti porphyrin complexes, (TTP)Ti(;f-alkyne), has been very useful in this regard. The 

Ti(II) complex is an extremely potent reductant and a versatile atom acceptor reagent. In an 

extension of our previous atom transfer work, we have examined the chemistry of 

(TTP)Ti(7^-3-hexyne) with heterocumulenes. These new reactions provide alternate 
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synthetic methods for preparing Ti(IV) complexes in addition to providing a means of 

estimating Ti^X multiple bond strengths. It should be noted that the atom/group transfer 

reactions here were not inhibited by the presence of added 3-hexyne. 

Attempts at establishing absolute values for the Ti-alkyne bond strengths by 

monitoring thermal ligand dissociation in solution 'H NMR spectroscopy were unsuccessful. 

For (TTP)Ti(77^-3-hexyne) and (TTP)Ti(7^-PhC2CPh), no dissociation was observed up to 

373 K. Thus, a lower estimate of the Ti-alkyne bond energy is ^ 12 kcal/mol as no 

dissociation was observed." Using this Ti-alkyne bond strength and tabulated bond 

strengths for small molecules (Table 1),^® estimates of the (TTP)Ti=X bond strengths were 

determined for (TTP)Ti=X (X = O, S, Se, MR). Cleavage of the sulfur-oxygen double bond 

in dimethyl sulfite requires 116 kcal/mol. With the estimated bond energy of the Ti-alkyne 

fragment, a Ti=0 bond strength of s: 128 kcal/mol is obtained. In comparison, theoretically 

and calorimetrically derived Ti=0 bond strengths are 143 kcal/moP and 147 kcal/mol.^' 

Furthermore, Ti-0 single bond energies have been found to range from 89-115 kcal/ mol.^ 

Based on the sulfur atom abstraction between 1 and Cy3P=S, a Ti=S bond strength of 110 

kcal/mol is calculated. Selenium atom transfer between Ph3P=Se and 1 provides a lower 

limit to the Ti=Se bond of 79 kcal/mol. Similarly, nitrene group transfer from RNCO to 1 

involves cleavage of the nitrogen-carbon double bond which requires approximately 88 

kcal/mol. Thus the titanium-nitrogen bond energy in (TTP)Ti=NR is 2: 100 kcal/mol. 

Although similar atom and group transfer reactions were found with compounds 6 

and 7, these reactions required heating. For example, formation of (TTP)Ti=N(SiMe3) from 

treatment of complex 7 with NjCSiMej) required heating the reaction mixture to 60®C. In 
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Table 1 Atom and group transfer reactions utilizing (TTP)Ti(;f-3-hexyne). 

Reagent Bond Cleavage by 1 * Bond Strength (kcal/mol) 

(CH3)2S=0'' / 87 = 

Ph2S=0" / 89 = 

(Me0)2S=0" / 116 = 

(tolyOaOSO" 113 = 

PhjPK)" 128 = 

'BuNC=0" 109 (MeNCO) ^ 

'BuN=CO" / 

PhjAsK)" 103 8 

'BuNC=S" / 71 (MeNCS) = 

Ph3P=S" / 88' 

Cy3P=S" / 98' 
SC=S'' / 103 = 

'BuNC=Se" / 

Ph3P=Se'' • 67 8 

(TMS)N-N2J / 40('BUN3)^ 
TrNC=N'Pr" • 

a) Reactions were performed at 20''C in C^Dg and monitored by 'H NMR unless 
otherwise indicated, b) Ref [4b]. c) Ref [26f\. d) This work, e) Ref [26c]. 
f) Ref. [26d]. g) Ref [26e]. h) Ref [4a]. i) Ref [26a]. j) Ref [9]. k) Ref [26b]. 

contrast, the facile reaction between the alkyne adduct, 1, and N3(SiMe3) occurred at 

ambient temperature. Heating a solution of the bis(phosphine) species, 6, in the presence of 

dimethyl sulfite produced (TTP)Ti(0Me)2," (TTP)Ti=0, and Et3P=S. 

Attempts at oxygen atom abstraction fi"om CO2, (PhO)3PO, (EtiN)3P0, and PhjPO 

were unsuccessful despite the ability of low valent Ti(II) complexes to break such strong 

bonds.* The reverse reaction, oxygen atom transfer fi-om (TTP)Ti=0 to BuNC, POctj, 

PPhj, or P(0Ph)3 was also not observed. Use of diphenylacetylene or pyridine to trap the 
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Ti(ll) intermediate also failed to promote atom transfer. Thus, a kinetic barrier must exist in 

the down-hill direction. 

Ligand Exchange Reactions. The reported ligand exchange reactions of titanocene 

and bis(pentadienyl) titanium(II) derivatives have dealt largely with CO and phosphines.^' 

The system in this work has made use of a wide variety of axial donor ligands. The 

metalloporphyrin fragment (TTP)Ti(II) has a preference for strong o-donors, exhibited by 

displacement of THF with picoline. The triethylphosphine ligands in complex 6 are rapidly 

displaced by pyridine and OPCOct),. Treatment of complex 6 with excess diphenylacetylene 

produces an equilibrium mixture of the diamagnetic monoacetylene complex, (TTP)Ti(7^-

PhC^CPh), and complex 6 (K « 0.2). Further variable temperature analysis of this 

equilibrium was prevented by decomposition of the Ti(n) complexes to uncharacterized, 

NMR-silent products. In the presence of excess pyridine, the trioctylphosphine oxide 

ligands in complex 7 are only partially displaced to form a mixed species, 

(TTP)Ti[0P(0ct)3](py). 

There is a contrasting ability to displace 3-hexyne from complex 1 with 0P(Ph)3 

compared to the phosphate, 0P(0Ph)3. The phosphine oxide resuhs in complete 

displacement of the alkyne within minutes. Whereas treatment of compound 1 with the 

phosphate, which is less nucleophilic and less bulky,^' results in no displacement even at 

80°C. 

Atom Transfer Intermediates. The binding of heterocumulenes to mid- and late-

transition metals has been well established.^^ However, isolable examples of early transition 

metal-heterocumulene complexes are rare. Known low valent metal complexes include 
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examples of rf-CO2, rf-CO^, jf-CSj, and ;f-RNCNR." The reaction between 1 and 

"BuNCK^h (Ch = S, Se) yields a diamagnetic, short-lived species observed by NMR. This 

transient compound possesses a 9-proton singlet at -0.S2 ppm which is assigned as a 'Bu 

group of a coordinated ligand. Since the chalcogenido complexes, (TTP)Ti=Ch, do not bind 

additional donor ligands, it does not seem likely that this intermediate is a terminal 

chalcogenido compound with a bound isocyanide or isocyanate. Moreover, (TTP)Ti=Ch, 

free BuNC, and "BuNCK^h are quantitatively accounted for in the 'H NMR. Likewise, the 

3-hexyne is accounted for as either bound (-0.12 (q), -0.87 (t)) or free (2.05 (q), 1.00 (t)). 

Thus, it is reasonable to assign this intermediate as a titanium complex containing only one 

bound 'BuNC=Ch, structure A, B, or C (Figure 3). Given the diamagnetism of the 

intermediate and the production of terminal sulfido and selenido products, the -bound 

RN 
II 
C 

Ch 

A B 

Figures. Bonding modes of isocyanates. 

Ti 

C 

form B may be the most likely formulation. The formation of terminal chalcogenido 

complexes, (TTP)Ti=Ch, from RNCS and RNCSe rather than imido production can be 

traced to weaker C=Ch bonds relative to the C=N bond. 

In the reaction of RNCO with 1, feasible intermediates are either r|'-0 or 
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0,C/ti^-C,N configurations. In light of the imido complex produced from 'BuNCO, form C 

is most likely, which sterically drives the relatively fast production of products. Steric 

interaction between the porphyrin macrocycle and the coordinated RNCO ligand would be 

displayed most readily by changing the size of the R group. However, for isocyanates, 

increasing the steric bulk from "BuNCO to 2,6-diisopropylphenyl isocyanate did not 

qualitatively change the rate of formation of the imido complex. 

Based on steric considerations, it was postulated that interaction of CSo with the 

tetraazaporphyrinato manganese(n) compound, [Mn(oespz)], resulted in an unstable ;7'-S 

intermediate.^ The reaction of (TTP)Ti(II) with carbon disulfide also includes transient 

intermediates. The diamagnetic species were readily observed by ^H NMR. Specifically, in 

benzene-</5 at 20 °C, within minutes after addition of CSj there is a single /^pyrrole signal at 

8.78 ppm. This species represents 67 % of the starting metalloporphyrin complex. The 

other 33 % of the starting reagent is not observed and is unaccounted for. Nonetheless, all 

of the 3-hexyne has been displaced and is accounted for quantitatively. Allowing the mixture 

to stand at ambient temperature for - 14 hours resulted in the formation of (TTP)Ti=S (9.29 

ppm, ;3-pyrrole, 2% yield by NMR) and a decrease in the intensity of the signal at 8.78 ppm. 

However, this is not directly related to the amount of the sulfido formed as two other broad 

signals have appeared in the porphyrin ^pyrrole region, 9.09 ppm and 8.72 ppm. Heating 

this solution for 1.5 hours at 80°C sharpens these two signals and produces an additional 

resonance at 8.65 ppm. Continued heating for another 23 hours results in the loss of the 

peak at 8.78 ppm, concomitant with the increase in the amount of (TTP)Ti=S formed 

(46.5% yield). In addition, the peaks at 9.09, 8.72, and 8.65 ppm also increased in intensity. 
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This reaction sequence is not easily interpreted as the disappearance of intermediates are not 

directly related to the formation of (TTP)Ti=S. The peaks at 9.09 and 8.65 seem to be 

related as they are found throughout in a 1:1 ratio. After heating at 80°C for 126 hours the 

only /^-pyrrole signals present are those located at 9.29 ((TTP)Ti=S, 78% yield) and 8.72 

ppm in a ratio of 6.7; 1. Addition of a large excess of CS2 does not eliminate the peak at 

8.72 ppm, nor does extended heating. A control experiment showed no reaction of 

(TTP)Ti=S with CSj, even at 80 °C. None of the 'H NMR signals of the observed 

intermediates correspond to those of (TTP)Ti(ri'-S2). A dimeric compound is suggested by 

the treatment of 1 with » 0.50 equiv of CSj, which resuhs in quantitative disappearance of 

starting material and production of the intermediate possessing a /^pyrrole signal at 8.78 

ppm. Although this species converts slowly to (TTP)Ti=S at ambient temperature, its 

solubility characteristics precluded isolation in a pure form. 

Magnetic behavior of complex 7. Insight into the electronic structure of complex 

7, which appears to be at the limit of atom transfer ability of titanium(II) metalloporphyrins, 

was facilitated by an investigation of the variable-temperature magnetic behavior. 

Notwithstanding the paucity of Ti(II) derivatives, parallel magnetic behavior is observed 

with CpjTiCbipy).^ In this work by Stucky, et al., molecular orbital calculations suggest the 

occurrence of n-back donation into relevant bipyridyl MO's. This partial reduction of the 

bipyridyl ligand explains the lower than expected magnetic moment which was lower than 

the spin-only value. Although the presence of back-donation may explain the behavior of 

(TTP)Ti(4-picoline)2, analogous behavior of complex 7 appears to be precluded by the fiill 

p-orbitals of o?Qrgen. The magnetic behavior of complex 7 can not be the result of metal-
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metal interaction due to the steric bulk of the porphyrin and the trans ligands. The magnetic 

behavior of complex 7 is most likely the result of a spin equilibrium involving a low lying 

excited state which is occupied at relatively high temperatures. 

Conclusion 

The Ti(II) complex, (TTP)Ti(;/^-3-hexyne), 1, is a potent reductant and a versatile 

inner sphere acceptor reagent. Treatment of complex 1 with a variety of heterocumulenes 

such as RN=CO, 'PrN=CNTr, CS2, 'BuNC=S, and 'BuNC=Se results in group or atom 

transfer and formation of the multiply-bonded species (TTP)Ti=NR, (TTP)Ti=S, or 

(TTP)Ti=Se. In addition, complex 1 abstracts an oxygen from (Me0)2S=0 to produce 

(TTP)Ti=0. These reactions were useful in determining estimates for Ti=0, Ti=S, and 

Ti=Se bond strengths. Notably, complex 1 does not abstract oxygen from 0=P(0ct)3. 

Instead, simple substitution occurs to produce the bis-ligand adduct (TTP)Ti[OP(Oct)3]2, 7. 
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APPENDIX A 

Table I. Crystal data and structure refinement for compound 6, (TTP)Tl(PEt3)2. 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume 
Z 
Density (calculated) 
Absorption coefiBcient 
F(OOO) 
Crystal size 
Theta range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Completeness to theta = 23.25° 
Absorption correction 
Max. and min. transmission 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on 
Final R indices [I>2o(I)] 
R indices (all data) 
Largest diff. peak and hole 

C60H66N4P 2Ti 
953.01 
173(2)K 
0.71073 A 
Triclinic 
PT 
a =10.9163(6) A a = 83.747(1)° 
b = 11.5404(6) A P = 78.928(1)° 
c = 20.7951(11) A Y = 85.252(1)° 
2550.5(2) A^ 
2 
1.241 Mg/m^ 
0.274 mm-' 
1012 
0.38 X 0.21 X 0.08 mm' 
1.00 to 23.25° 
-11 5hs 12,-12sks 12, Oi U23 
28087 
7015 [R(int) = 0.1083] 
96.0 % 
Empirical with SADABS 
0.9784 and 0.9032 
Full-matrix least-squares on F-
7015/0 /267 
1.088 
R1 =0.1262, wR2 = 0.3514 
R1 =0.1766, wR2 = 0.3795 
2.033 and-1.557 eA"' 
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Figure 1. Bali and sticic representation of (TTP)Ti(PEt])2. 
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Table n. Atomic coordinates ( x 10^) and equivalent isotropic displacement parameters 
(A^ 10^) for complex 6. U(eq) is defined as one third of the trace of the orthogonalized Uy 
tensor. 

Atom X y z U(eq) 

Ti(l) 10000 10000 10000 11(1) 

P(l) 12143(3) 10783(2) 9349(1) 25(1) 

N(l) 9168(8) 11673(7) 10020(4) 19(2) 

N(2) 9323(7) 9806(7) 9167(4) 15(2) 

C(l) 9154(9) 12433(8) 10495(5) 18(2) 

C(2) 8435(10) 13465(9) 10346(5) 23(2) 

C(3) 8020(10) 13340(9) 9782(5) 21(2) 

C(4) 8447(9) 12237(8) 9574(5) 17(2) 

C(5) 8178(10) 11739(9) 9036(5) 24(2) 

C(6) 8604(10) 10619(9) 8834(5) 20(2) 

C(7) 8241(10) 10095(9) 8318(5) 21(2) 

C(8) 8755(11) 8998(10) 8314(6) 29(3) 

C(9) 9470(10) 8800(9) 8831(5) 20(2) 

C(10) 10206(10) 7774(9) 8967(5) 24(2) 

C( l l )  7346(10) 12465(9) 8626(5) 24(2) 

C(12) 6114(11) 12792(10) 8910(6) 30(3) 

C(13) 5348(12) 13407(10) 8516(6) 34(3) 

C(14) 5716(11) 13738(10) 7864(6) 29(3) 

C(15) 6943(11) 13454(10) 7589(6) 29(3) 

C(16) 7790(11) 12834(10) 7954(6) 30(3) 

C(17) 4834(13) 14388(12) 7446(7) 46(3) 

C(18) 10315(10) 6828(9) 8519(5) 21(2) 

C(19) 10927(11) 7001(10) 7861(5) 28(3) 

C(20) 11106(11) 6117(10) 7459(6) 32(3) 

C(21) 10699(11) 5013(10) 7691(6) 31(3) 

C(22) 10098(11) 4837(10) 8331(6) 31(3) 

C(23) 9879(11) 5724(10) 8747(6) 28(3) 

C(24) 10958(13) 4021(11) 7254(7) 45(3) 

C(25) 13418(12) 9629(11) 9352(7) 42(3) 
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C(26) 14713(14) 9878(13) 8996(7) 54(4) 

C(27) 12287(13) 11364(12) 8493(6) 45(3) 

C(28) 12174(15) 10470(13) 8030(8) 61(4) 

C(29) 12723(12) 11947(10) 9723(6) 34(3) 

C(30) 12081(12) 13151(11) 9585(6) 39(3) 

Ti(2) 5000 10000 5000 13(1) 

P(2) 2865(3) 10900(3) 5608(1) 26(1) 

N(1A) 5778(7) 10294(7) 5788(4) 16(2) 

N(2A) 4488(8) 8394(7) 5455(4) 16(2) 

C(1A) 6313(10) 11281(9) 5886(5) 25(3) 

C(2A) 6605(10) 11207(9) 6525(5) 25(3) 

C(3A) 6243(11) 10143(10) 6832(6) 31(3) 

C(4A) 5733(10) 9561(9) 6379(5) 25(3) 

C(5A) 5248(10) 8459(9) 6505(5) 24(2) 

C(6A) 4671(10) 7917(9) 6080(5) 23(2) 

C(7A) 4092(10) 6839(10) 6228(6) 27(3) 

C(8A) 3559(10) 6647(9) 5699(5) 22(2) 

C(9A) 3814(9) 7622(9) 5212(5) 18(2) 

C(IOA) 3438(10) 7734(9) 4603(5) 20(2) 

C(llA) 5326(11) 7820(10) 7166(6) 30(3) 

C(12A) 6515(12) 7396(10) 7309(6) 34(3) 

C(13A) 6613(14) 6848(12) 7933(7) 46(3) 

C(14A) 5560(13) 6731(12) 8412(7) 47(3) 

C(15A) 4387(14) 7100(12) 8279(7) 47(3) 

C(16A) 4301(12) 7645(10) 7656(6) 36(3) 

C(17A) 5678(16) 6174(14) 9120(8) 66(4) 

C(18A) 2761(10) 6787(9) 4433(5) 25(3) 

C(19A) 3315(11) 5673(9) 4323(5) 24(2) 

C(20A) 2666(10) 4805(10) 4166(5) 27(3) 

C(21A) 1389(11) 4999(10) 4123(6) 30(3) 

C(22A) 842(12) 6081(10) 4231(6) 37(3) 
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C(23A) 1494(11) 6965(11) 4380(6) 34(3) 

C(24A) 690(13) 4061(12) 3935(7) 46(3) 

C(25A) 1802(12) 11655(11) 5098(6) 37(3) 

C(26A) 1369(13) 10884(12) 4647(7) 46(3) 

C(27A) 1920(12) 9822(11) 6148(7) 43(3) 

C(28A) 627(13) 10183(12) 6500(7) 50(4) 

C(29A) 3017(12) 11999(10) 6155(6) 36(3) 

C(30A) 3320(12) 13223(11) 5799(6) 39(3) 
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Table m. Bond lengths [A] and angles [°] for complex 6. 

Ti(l)-N(2) 2.050(8) Ti(2)-N(2A)#2 2.057(8) 

Ti(l)-N(2)#l 2.050(8) Ti(2)-N(2A) 2.057(8) 

Ti(l)-N(l) 2.066(8) Ti(2).N(lA) 2.055(8) 

Ti(l)-N(l)#l 2.066(8) Ti(2)-N(1A)#2 2.055(8) 

Ti(l)-P(l) 2.644(3) Ti(2)-P(2)#2 2.619(3) 

Ti(l)-P(l)#l 2.644(3) Ti(2)-P(2) 2.619(3) 

P(l)-C(27) 1.815(13) P(2)-C(27A) 1.826(13) 

P(l)-C(29) 1.836(12) P(2)-C(25A) 1.827(12) 

P(l)-C(25) 1.845(13) P(2).C(29A) 1.832(12) 

N(l)-C(l) 1.388(13) N(1A)-C(1A) 1.374(13) 

N(1)-C(4) 1.402(13) N(1A)-C(4A) 1.411(13) 

N(2)-C(6) 1.387(13) N(2A)-C(9A) 1.392(12) 

N(2)-C(9) 1.401(13) N(2A).C(6A) 1.399(13) 

C(1>C(2) 1.409(15) C(1A)-C(2A) 1.417(15) 

C(l)-C(10)#l 1.418(14) C(1A)-C(10A)#2 1.446(15) 

C(2)-C(3) 1.363(14) C(2A)-C(3A) 1.372(16) 

C(3)-C(4) 1.402(14) C(3A)-C(4A) 1.433(15) 

C(4>C(5) 1.401(14) C(4A)-C(5A) 1.397(15) 

C(5>C(6) 1.417(15) C(5A)-C(6A) 1.403(14) 

C(5).C(11) 1.507(15) C(5A).C(11A) 1.501(15) 

C(6>C(7) 1.421(14) C(6A)-C(7A) 1.419(15) 

C(7)-C(8) 1.343(15) C(7A)-C(8A) 1.385(15) 

C(8)-C(9) 1.434(15) C(8A)-C(9A) 1.437(15) 

C(9>C(10) 1.409(15) C(9A)-C(10A) 1.395(14) 

C(10).C(1)#1 1.418(14) C(10A)-C(1A)#2 1.446(15) 

C(10)-C(18) 1.495(14) C(10A)-C(18A) 1.478(14) 

C(ll)-C(16) 1.419(16) C(11A)-C(16A) 1.374(17) 

C(ll)-C(12) 1.400(16) C(11A)-C(12A) 1.422(17) 

C(12)-C(13) 1.382(16) C(12A)-C(13A) 1.401(18) 

C(13)-C(14) 1.359(16) C(13A)-C(14A) 1.374(19) 

C(14).C(15) 1.380(16) C(14A)-C(15A) 1.385(19) 
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C(14)-C(17) 1.518(17) C(14A)-C(17A) 1.57(2) 

C(15)-C(16) 1.408(16) C(15A)-C(16A) 1.394(18) 

C(18)-C(23) 1.399(15) C(18A)-C(19A) 1.397(15) 

C(18)-C(19) 1.403(15) C(18A)-C(23A) 1.405(16) 

C(19)-C(20) 1.366(16) C(19A)-C(20A) 1.375(15) 

C(20)-C(21) 1.390(16) C(20A)-C(21A) 1.412(16) 

C(21)-C(22) 1.367(16) C(21A)-C(22A) 1.361(17) 

C(21)-C(24) 1.514(17) C(21A)-C(24A) 1.500(17) 

C(22)-C(23) 1.388(16) C(22A)-C(23A) 1.384(16) 

C(25)-C(26) 1.499(19) C(25A)-C(26A) 1.522(17) 

C(27)-C(28) 1.513(19) C(27A)-C(28A) 1.508(19) 

C(29)-C(30) 1.527(17) C(29A)-C(30A) 1.552(17) 

N(2)-Ti(l)-N(2)#l 180.0 N(2A)#2-Ti(2)-N(2A) 180.0 

N(2)-Ti(l)-N(l) 90.1(3) N(2A)#2-Ti(2)-N(1A) 89.7(3) 

N(2)#l-Ti(l)-N(l) 89.9(3) N(2A)-Ti(2)-N(1A) 90.3(3) 

N(2)-Ti(l)-N(l)#l 89.9(3) N(2A)#2-Ti(2)-N(1A)#2 90.3(3) 

N(2)#l-Ti(l)- 90.1(3) N(2A)-Ti(2)-N(1A)#2 89.7(3) 

N(l)-Ti(l)-N(l)#l 180.0 N(1A)-Ti(2)-N(1A)#2 180.0 

N(2)-Ti(l)-P(l) 94.3(2) N(2A)#2-Ti(2)-P(2)#2 88.1(2) 

N(2)#l-Ti(l)-P(l) 85.7(2) N(2A)-Ti(2)-P(2)#2 91.9(2) 

N(l)-Ti(l)-P(l) 91.6(2) N(1A)-Ti(2)-P(2)#2 91.7(2) 

N(l)#l-Ti(l)-P(l) 88.4(2) N(1A)#2-Ti(2)-P(2)#2 88.3(2) 

N(2)-Ti(l)-P(l)#l 85.7(2) N(2A)#2-Ti(2)-P(2) 91.9(2) 

N(2)#l-Ti(l)-P(l)#l 94.3(2) N(2A)-Ti(2)-P(2) 88.1(2) 

N(l)-Ti(l)-P(l)#l 88.4(2) N(1A)-Ti(2)-P(2) 88.3(2) 

N(l)#l-Ti(l)-P(l)#l 91.6(2) N(1A)#2-Ti(2)-P(2) 91.7(2) 

P(l)-Ti(l)-P(l)#l 180.0 P(2)#2-Ti(2)-P(2) 180.0 

C(27)-P(l)-C(29) 102.7(6) C(27A)-P(2)-C(25A) 104.3(6) 

C(27)-P(l)-C(25) 104.6(6) C(27A)-P(2)-C(29A) 103.6(6) 

C(29)-P(1).C(25) 102.3(6) C(25A)-P(2)-C(29A) 102.6(6) 
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C(27)-P(l)-Ti(l) 120.1(5) C(27A)-P(2)-Ti(2) 113.2(4) 

C(29)-P(l)-Ti(l) 114.5(4) C(25A)-P(2)-Ti(2) 117.3(4) 

C(25)-P(l)-Ti(l) 110.7(4) C(29A)-P(2)-Ti(2) 114.3(4) 

C(1).N(1)-C(4) 106.6(8) C(1A)-N(1A)-C(4A) 105.5(8) 

C(l)-N(l)-Ti(l) 126.9(7) C(1A)-N(1A)-Ti(2) 128.1(7) 

C(4)-N(l)-Ti(l) 126.5(6) C(4A)-N(1A)-Ti(2) 126.0(6) 

C(6)-N(2)-C(9) 106.2(8) C(9A)-N(2A).C(6A) 107.7(8) 

C(6)-N(2)-Ti(l) 127.4(6) C(9A)-N(2A)-Ti(2) 125.7(6) 

C(9)-N(2)-Ti(l) 126.4(6) C(6A)-N(2A)-Ti(2) 126.5(6) 

N(l)-C(l)-C(2) 109.2(9) N(1A)-C(IA)-C(2A) 111.4(9) 

N(l)-C(l)-C(10)#l 125.6(9) N(1A)-C(1A)-C(10A)#2 124.4(9) 

C(2)-C(l)-C(10)#l 125.2(9) C(2A)-C(1A)-C(10A)#2 124.2(10) 

C(3)-C(2)-C(l) 107.2(9) C(3A)-C(2A)-C(1A) 106.6(10) 

C(2).C(3)-C(4) 109.0(9) C(2A)-C(3A)-C(4A) 107.9(10) 

C(5)-C(4)-N(l) 124.6(9) C(5A)-C(4A)-N(1A) 125.5(9) 

C(5)-C(4)-C(3) 127.4(9) C(5A)-C(4A)-C(3A) 125.8(10) 

N(1).C(4).C(3) 108.0(8) N(1A)-C(4A)-C(3A) 108.6(9) 

C(4K(5)-C(6) 127.0(10) C(4A)-C(5A)-C(6A) 126.0(10) 

C(4)-C(5)-C(ll) 116.9(9) C(4A)-C(5A)-C(11A) 116.3(9) 

C(6)-C(5)-C(ll) 116.1(9) C(6A)-C(5A)-C(11A) 117.7(9) 

N(2)-C(6).C(5) 124.4(9) N(2A)-C(6A)-C(5A) 125.5(9) 

N(2)-C(6)-C(7) 109.2(9) N(2A)-C(6A).C(7A) 108.4(9) 

C(5)-C(6).C(7) 126.0(10) C(5A)-C(6A)-C(7A) 126.0(10) 

C(8)-C(7).C(6) 108.3(10) C(8A)-C(7A)-C(6A) 108.3(10) 

C(7)-C(8)-C(9) 107.9(10) C(7A)-C(8A)-C(9A) 107.1(9) 

N(2)-C(9)-C(10) 126.2(9) N(2A)-C(9A)-C(10A) 127.6(9) 

N(2)-C(9)-C(8) 108.3(9) N(2A)-C(9A)-C(8A) 108.5(8) 

C(10)-C(9)-C(8) 125.5(10) C(10A)-C(9A)-C(8A) 124.0(9) 

C(9)-C(10)-C(l)#l 124.7(9) C(9A)-C(10A)-C(1A)#2 124.0(9) 

C(9)-C(10)-C(18) 118.0(9) C(9A)-C(10A)-C(18A) 118.8(9) 

C(1)#1-C(10>C(18) 117.3(9) C(1A)#2-C(10A)-C(18A) 117.1(9) 
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Table m. (continued) 

C(16).C(11)-C(12) 119.0(10) C(16A)-C(11A)-C(12A) 117.4(11) 

C(16)-C(ll)-C(5) 121.2(10) C(16A)-C(11A)-C(5A) 123.2(11) 

C(12)-C(11)-C(5) 119.8(10) C(12A)-C(11A)-C(5A) 119.4(11) 

C(13)-C(12)-C(ll) 118.8(11) C(13A)-C(12A)-C(11A) 120.2(12) 

C(14).C(13)-C(12) 124.3(12) C(14A)-C(13A)-C(12A) 119.9(13) 

C(13)-C(14)-C(15) 117.0(11) C(13A)-C(14A)-C(15A) 121.0(13) 

C(13)-C(14)-C(17) 122.6(11) C(13A)-C(14A)-C(17A) 119.9(13) 

C(15)-C(14)-C(17) 120.5(11) C(15A)-C(14A)-C(17A) 119.1(13) 

C(14)-C(15)-C(16) 122.6(11) C(14A)-C(15A)-C(16A) 118.4(14) 

C(15)-C(16)-C(ll) 118.3(11) C(11A)-C(16A)-C(15A) 122.9(12) 

C(23)-C(18)-C(19) 117.7(10) C(19A)-C(18A)-C(23A) 116.0(10) 

C(23)-C(18)-C(10) 121.5(10) C(19A)-C(18A)-C(10A) 123.2(10) 

C(19)-C(18)-C(10) 120.7(9) C(23A)-C(18A)-C(10A) 120.8(10) 

C(20)-C(19)-C(18) 121.1(11) C(20A)-C(19A)-C(18A) 122.2(10) 

C(19)-C(20)-C(21) 121.1(11) C(19A)-C(20A)-C(21A) 120.9(11) 

C(22)-C(21)-C(20) 118.2(11) C(22A)-C(21A)-C(20A) 117.2(11) 

C(22)-C(21)-C(24) 120.9(11) C(22 A)-C(21 A)-C(24 A) 121.9(11) 

C(20)-C(21)-C(24) 120.8(11) C(20A)-C(21A)-C(24A) 120.8(11) 

C(21)-C(22)-C(23) 122.0(11) C(21A)-C(22A)-C(23A) 122.2(12) 

C(22)-C(23)-C(18) 119.8(11) C(22A)-C(23A)-C(18A) 121.5(11) 

C(26)-C(25)-P(l) 119.7(10) C(26A)-C(25A)-P(2) 114.2(9) 

C(28)-C(27)-P(l) 114.2(10) C(28A)-C(27A)-P(2) 119.9(10) 

C(30)-C(29)-P(l) 113.8(8) C(30A)-C(29A)-P(2) 114.5(9) 
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Table IV. Crystal data, data collection, and solution and refinement for complex 7, 
(TTP)TirOP(Oct),1,. 

Empirical formula 
Crystal habit, color 
Crystal size 
Crystal system 
Space group 
Unit cell dimensions 

Volume 
Z 
Formula weight 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Dififractometer 
Wavelength 
Temperature 
6 range for data collection 
Index ranges 
Reflections collected 
Independent reflection 
System used 
Solution 
Refinement method 
Weighting scheme 

Absorption correction 
Max. and min. transmission 
Data / restraints / parameters 
R indices (I > 2o(I) = 7872) 
R indices (all data) 
Goodness-of-fit on 
Largest diff. peak and hole 

a = 90° 
3 = 96.169(1)= 
7 = 90° 

^96^138^4^2? 2 ' 
Irregular block. Dark red 
0.25 X 0.20 x 0.18 mm 
Monoclinic 
P2i/n 
a = 10.2196(1) A 
b = 28.6024(5) A 
c= 15.4589(2) A 
4492.55(11) A' 
2 
1489.94 
1.101 Mg/m^ 
0.179 nmi'' 
1620 
Siemens SMART Platform CCD 
0.71073 A 
173(2)K 
1.42 to 25.00° 
-12<A< 12, 0<A:<33, 0< <18 
21423 
7802 (Ri„, = 0.0574) 
SHELXTL-V5.0 
Direct methods 
Full-matrix least-squares on F" 
W = [©"(F,-) + (AP)- + (BP)]-\ where P ^ 
(F„^ + 2Fc^)/3, A = 0.0552, and B = 0.0 
SADABS (Sheldrick, 1996) 
1.000 and 0.487 
7800/0/475 
R1 =0.0548, wR2 = 0.1138 
R1 =0.1026, wR2 = 0.1303 
0.989 
0.336 and -0.333 eA"^ 
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Table V. Atomic coordinates and equivalent isotropic displacement parameters for complex 
7. U(eq) is defined as one third of the trace of the orthogonalized Uy tensor. 

Atom X y z U(eq) 

Ti(I) 0.0000 0.0000 0.5000 0.0202(2) 
0(1) 0.1116(2) 0.00980(5) 0.39664(10) 0.0250(4) 

N(l) -0.0277(2) 0.07137(6) 0.50583(12) 0.0214(5) 

C(l)  -0.1123(2) 0.09807(8) 0.44893(15) 0.0207(6) 

C(2) -0.1000(3) 0.14541(8) 0.4733(2) 0.0262(6) 

C(3) -0.0087(3) 0.14814(8) 0.5457(2) 0.0271(6) 

C(4) 0.0364(2) 0.10222(8) 0.5656(2) 0.0222(6) 

C(5) 0.1365(2) 0.08951(8) 0.6339(2) 0.0232(6) 

C(6) 0.1920(2) 0.04514(8) 0.6461(2) 0.0223(6) 

C(7) 0.2901(3) 0.03204(9) 0.7167(2) 0.0272(6) 

C(8) 0.3077(3) -0.01442(8) 0.7135(2) 0.0269(6) 

C(9) 0.2210(2) -0.03249(8) 0.6404(2) 0.0226(6) 

C(10) 0.1999(2) -0.07942(8) 0.6212(2) 0.0225(6) 

N(2) 0.1558(2) 0.00521(6) 0.59692(12) 0.0224(5) 

C(ll)  0.1787(3) 0.12727(8) 0.6977(2) 0.0239(6) 

C(12) 0.0903(3) 0.14581(9) 0.7508(2) 0.0327(7) 

C(13) 0.1275(3) 0.18073(9) 0.8111(2) 0.0377(7) 

C(14) 0.2544(3) 0.19876(9) 0.8198(2) 0.0338(7) 

C(15) 0.3416(3) 0.18082(9) 0.7666(2) 0.0383(7) 

C(16) 0.3053(3) 0.14581(9) 0.7066(2) 0.0335(7) 

C(17) 0.2946(3) 0.23692(10) 0.8856(2) 0.0547(9) 

C(18) 0.2684(3) -0.11504(8) 0.6815(2) 0.0240(6) 

C(19) 0.1989(3) -0.13879(11) 0.7393(2) 0.0510(9) 

C(20) 0.2574(3) -0.17250(11) 0.7951(2) 0.0565(10) 

C(21) 0.3883(3) -0.18435(9) 0.7952(2) 0.0356(7) 

C(22) 0.4575(3) -0.16092(10) 0.7376(2) 0.0475(8) 

C(23) 0.3990(3) -0.12703(10) 0.6813(2) 0.0419(8) 

C(24) 0.4515(3) -0.22126(11) 0.8562(2) 0.0596(10) 

P(l) 0.25328(7) 0.01950(2) 0.38250(4) 0.0259(2) 
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Table V. (continued) 

Atom X y z U(eq) 

C(25) 0.3582(3) -0.02816(8) 0.4207(2) 0.0301(7) 

C(26) 0.3156(3) -0.07425(8) 0.3753(2) 0.0357(7) 

C(27) 0.3830(3) -0.11724(8) 0.4163(2) 0.0310(7) 

C(28) 0.3447(3) -0.16195(8) 0.3673(2) 0.0340(7) 

C(29) 0.4040(3) -0.20601(8) 0.4100(2) 0.0366(7) 

C(30) 0.3616(3) -0.25090(9) 0.3622(2) 0.0388(7) 

C(31) 0.4196(3) -0.29485(9) 0.4064(2) 0.0461(8) 

C(32) 0.3809(3) -0.33957(10) 0.3580(2) 0.0578(10) 

C(33) 0.2713(3) 0.02715(9) 0.2677(2) 0.0346(7) 

C(34) 0.1426(3) 0.03653(9) 0.2098(2) 0.0411(8) 

C(35) 0.0654(3) -0.00738(10) 0.1834(2) 0.0440(8) 

C(36) -0.0592(3) 0.00145(10) 0.1225(2) 0.0452(8) 

C(37) -0.1297(3) -0.04307(11) 0.0908(2) 0.0495(8) 

C(38) -0.2595(3) -0.03569(12) 0.0355(2) 0.0567(9) 

C(39) -0.3314(4) -0.08049(13) 0.0072(3) 0.0761(12) 

C(40) -0.4564(4) -0.0731(2) -0.0542(3) 0.100(2) 

C(41) 0.3114(3) 0.07284(8) 0.4357(2) 0.0290(6) 

C(42) 0.2427(3) 0.11665(8) 0.3955(2) 0.0304(7) 

C(43) 0.2925(3) 0.16181(8) 0.4395(2) 0.0311(7) 

C(44) 0.2291(3) 0.20552(8) 0.3973(2) 0.0373(7) 

C(45) 0.2813(3) 0.25101(9) 0.4393(2) 0.0392(7) 

C(46) 0.2202(3) 0.29477(9) 0.3972(2) 0.0478(9) 

C(47) 0.2665(4) 0.34020(9) 0.4400(2) 0.0571(10) 

C(48) 0.2070(4) 0.38363(10) 0.3962(3) 0.0767(12) 
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Table VI. Bond lengths [A] and angles [°] for complex 7. 

Ti(l)-N(l) 2.064(2) C(18)-C(23) 1.378(4) 

Ti(l)-N(l) 2.064(2) C(18)-C(19) 1.379(4) 

Ti(l)-N(2) 2.071(2) C(19>-C(20) 1.385(4) 

Ti(l)-N(2) 2.071(2) C(20)-C(21) 1.380(4) 

Ti(l)-0(1) 2.080(2) C(21)-C(22) 1.370(4) 

Ti(l)-0(1) 2.080(2) C(21)-C(24) 1.513(4) 

0(1)-P(1) 1.513(2) C(22>-C(23) 1.394(4) 

N(l)-C(4) 1.390(3) P(l)-C(25) 1.795(3) 

N(l)-C(l) 1.393(3) P(l)-C(41) 1.803(2) 

C(l)-C(2) 1.407(3) P(l)-C(33) 1.817(3) 

C(l)-C(10) 1.433(3) C(25)-C(26) 1.534(3) 

C(2>-C(3) 1.381(3) C(26)-C(27) 1.515(3) 

C(3>-C(4) 1.414(3) C(27)-C(28) 1.516(3) 

C(4)-C(5) 1.436(3) C(28)-C(29) 1.518(3) 

C(5)-C(6) 1.395(3) C(29)-C(30) 1.521(3) 

C(5)-C(ll) 1.494(3) C(30>-C(31) 1.521(4) 

C(6)-N(2) 1.399(3) C(31)-C(32) 1.513(4) 

C(6)-C(7) 1.449(3) C(33)-C(34) 1.533(4) 

C(7H:(8) 1.342(3) C(34)-C(35) 1.516(4) 

C(8)-C(9) 1.454(3) C(35)-C(36) 1.520(4) 

C(9)-C(10) 1.386(3) C(36)-C(37) 1.519(4) 

C(9)-N(2) 1.401(3) C(37)-C(38) 1.514(4) 

C(lOHCl) 1.433(3) C(38)-C(39) 1.518(4) 

C(10>-C(18) 1.502(3) C(39)-C(40) 1.522(5) 

C(ll)-C(12) 1.390(3) C(41)-C(42) 1.534(3) 

C(ll)-C(16) 1.392(4) C(42)-C(43) 1.521(3) 

C(12)-C(13) 1.391(3) C(43)-C(44) 1.522(3) 

C(13)-C(14) 1.389(4) C(44)-C(45) 1.524(3) 

C(14H:(15) 1.376(4) C(45)-C(46) 1.514(4) 

C(14)-C(17) 1.518(3) C(46)-C(47) 1.511(4) 

C(15)-C(16) 1.388(3) C(47)-C(48) 1.511(4) 
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N(l)-Ti(l)-N(l) 180.0 C(16)-C(ll)-C(5) 122.6(2) 

N(l)-Ti(l)-N(2) 90.25(7) C(13)-C(12)-C(ll) 121.4(3) 

N(l)-Ti(l)-N(2) 89.75(7) C(12)-C(13)-C(14) 121.1(3) 

N(l)-Ti(l)-N(2) 89.74(7) C(15)-C(14)-C(13) 117.6(2) 

N(l)-Ti(l)-N(2) 90.26(7) C(15)-C(14)-C(17) 121.5(3) 

N(2>-Ti(l)-N(2) 180.0 C(13)-C(14)-C(17) 120.9(3) 

N(l)-Ti(l)-0(1) 90.61(7) C(14)-C(15)-C(16) 121.7(3) 

N(l>-Ti(l)-0(1) 89.39(7) C(15)-C(16)-C(ll) 121.3(3) 

N(2>-Ti(l)-0(1) 95.95(7) C(23)-C(18)-C(19) 116.4(2) 

N(2)-Ti(l>-0(1) 84.05(7) C(23)-C(18)-C(10) 123.7(2) 

Ti(l>-0(1) 89.39(7) C(19)-C(18)-C(10) 119.9(2) 

N(l)-Ti(l)-0(1) 90.61(7) C(18)-C(19)-C(20) 121.9(3) 

N(2)-Ti(l)-0(1) 84.05(7) C(21)-C(20)-C(19) 121.7(3) 

N(2>-Ti(l)-0(1) 95.95(7) C(22)-C(21)-C(20) 116.5(3) 

0(1>-Ti(l)-0(1) 180.0 C(22)-C(21)-C(24) 122.1(3) 

P(l)-0(1>-Ti(l) 138.43(10) C(20)-C(21)-C(24) 121.4(3) 

C(4)-N(l>-C(l) 106.7(2) C(21)-C(22)-C(23) 122.0(3) 

C(4)-N(l)-Ti(l) 126.9(2) C(18)-C(23)-C(22) 121.5(3) 

C(l>-N(l>-Ti(l) 26.39(15) 0(1)-P(1)-C(25) 111.14(11) 

N(l)-C(l)-C(2) 109.1(2) 0(1)-P(1)-C(41) 111.26(11) 

N(l)-C(l)-C(10) 124.7(2) C(25)-P(l)-C(41) 109.69(12) 

C(2)-C(l)-C(10) 126.2(2) 0(1)-P(1)-C(33) 111.23(12) 

C(3>-C(2>-C(l) 107.7(2) C(25)-P(l)-C(33) 107.04(13) 

C(2)-C(3)-C(4) 107.4(2) C(41)-P(l)-C(33) 106.27(12) 

N(l)-C(4>-C(3) 109.0(2) C(26)-C(25>-P(l) 111.8(2) 

N(l)-C(4)^(5) 125.1(2) C(27)-C(26)-C(25) 114.3(2) 

C(3)-C(4)-C(5) 125.8(2) C(26)-C(27)-C(28) 113.2(2) 

C(6)-C(5)-C(4) 125.3(2) C(29)-C(28)-C(27) 114.4(2) 

C(6>-C(5)-C(ll) 119.0(2) C(28)-C(29)-C(30) 114.2(2) 

C(4)-C(5)-C(ll) 115.7(2) C(29)-C(30)-C(31) 113.7(2) 

C(5)-C(6>-N(2) 126.1(2) C(32)-C(31)-C(30) 114.1(3) 
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Table VI. (continued) 

C(5>-C(6)-C(7) 125.1(2) C(34)-C(33)-P(l) 114.8(2) 

N(2H:(6)-C(7) 108.6(2) C(35)-C(34)-C(33) 113.7(2) 

C(8)-C(7)-C(6) 108.2(2) C(36)-C(35)-C(34) 114.0(2) 

C(7)-G(8)-C(9) 107.9(2) C(35)-C(36)-C(37) 113.4(2) 

C(10)-C(9)-N(2) 126.0(2) C(38)-C(37)-C(36) 115.0(3) 

C(10)-C(9)-C(8) 125.3(2) C(37)-C(38)-C(39) 114.4(3) 

N(2)-C(9)-C(8) 108.5(2) C(38)-C(39)-C(40) 114.2(3) 

C(9)-C(10)-(C1) 126.3(2) C(42)-C(41)-P(l) 113.1(2) 

C(9)-C(10)-C(18) 118.2(2) C(43)-C(42)-C(41) 113.4(2) 

C(l)-C(10)-C(18) 115.4(2) C(42)-C(43)-C(44) 113.6(2) 

C(6)-N(2)-C(9) 106.4(2) C(43)-C(44)-C(45) 114.0(2) 

C(6)-N(2)-Ti(l) 126.1(2) C(46)-C(45)-C(44) 114.4(2) 

C(9)-N(2)-Ti(l) 125.51(15) C(47)-C(46)-C(45) 115.3(3) 

C(12)-C(ll)-C(16) 116.9(2) C(48)-C(47)-C(46) 114.7(3) 

C(12)-C(ll)-C(5) 120.4(2) 
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CHAPTER 5: SYNTHESIS, STRUCTURE, AND REACTIVITY OF 

ZIRCONIUM AND HAFNIUM IMIDO METALLOPORPHYRINS 

A paper submitted to Inorganic Chemistry 

Joseph L. Thorman, Ilia A. Guzei, Victor G. Young, Jr.% and L. Keith Woo* 

Abstract 

Zirconium and hafiiium porphyrin imido complexes (TTP)M=NAr'^ [TTP = meso-

5,10,15,20-tetra-p-tolylporphyrinato dianion, M = Zr (1), Hf (2), Ar'^ = 2,6-

diisopropylphenyl] were synthesized from (TTP)MCl2 and 2 equivalents of LiNHAr"^. The 

zirconium imido complex, (TTP)Zr=NAr'^, was also obtained from the preformed imido 

Zr(NAr'^Cl2(THF)2 and (TTP)Li2(THF)2. Treatment of (TTP)HfCl2 with excess LiNH(p-

MeC jH4) resulted in the formation of a bis(amido), (TTP)H£(NH-/7-MeC4H4)2 (3), instead of 

an imido complex. In the presence of excess aniline, 2 formed an equilibrium mixture of 

bis(amido) compounds, (TTP)Hf(NHPh)(NHAr'^ and (TTP)Hfl[NHPh)2. The nucleophilic 

character of the imido moiety is exhibited by its reaction with 'BuNCO, producing isolable 

N,0-bound ureato metallacycles. The kinetic product obtained with zirconium, (TTP)Zr(7^-

NAr^C(=N'Bu)0) (4a), isomerized to (TTP)Zr(;f-N'BuC(=NAr"^0) (4b) in solution. 

Upon heating to 80 °C, 4a produced the carbodiimide, Ar'^=C=N'Bu, and a transient 

Zr(IV) 0X0 complex. The analogous hafriiimi complex (TTP)Hf(7 -̂NAr''̂ C(=N'Bu)0) (5a) 

did not eject the carbodiimide upon heating to 110 °C but isomerized to (TTP)Hfl[7^-
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>rBuC(=NAr^O) (5b). To support the formulation of 4a and 5a as N,0 bound, the 

complex (TTP)Hf(;f-NAr'^C(=NAr'^0) (6) was studied by variable temperature NMR. 

The corresponding thio- and seleno-ureato metallacycles were not isolable in the reaction 

between 1 and 2 with "BuNCS and "BuNCSe. Concomitant formation of the metallacycle 

with decomposition to the carbodiimide, Ar''^=C=NBu, reflects the lower C-Ch bond 

strength in the proposed N,Ch-bound metallacycles. Treatment of 2 with 1,3-

diisopropylcarbodiimide resulted in the 7^-guanidino complex, (TTP)Hfl[;7^-

NAr''^C(=N'Pr)NTr) (7a), which isomerized to the less sterically crowded isomer 

(TTP)Hf(7^-NTrC(=NAr''*0NTr) (7b). Complexes 1, 2, 4a, 4b, and 7a were characterized 

by X-ray crystallography. The monomeric terminal imido compounds, 1 and 2, are 

isomorphous: distances of 1.863(2) A (Zr) and 1.859(2) A (Hf); M-N(i^)-C 

angles of 172.5(2)° (Zr) and 173.4(2)° (Hf). The structures of the ureato complexes 4a and 

4b and the guanidino complex 7a exhibit typical alkoxido and amido bond distances (Zr-N: 

2.1096(13) A (4a), 2.137(3) A (4b); Zr-0: 2.0677(12) A (4a), 2.066(3) A (4b); Hf-N: 

2.087(2) A, 2.151(2) A (7a)). 

Introduction 

The discovery of C-H bond activation by zirconium imido complexes in 1988 

prompted investigations of group 4 imido complexes in a variety of supporting ligand 

environments.^'' Cyclopentadienyl, bulky amido, tetraazaannulene, alkoxo, and bis(amido-

phosphine) groups have been successfiilly employed as ancillary ligands for isolable terminal 

Ti, Zr, and Hf imido complexes.*'^'*'^ ®'''*'''"' Titanium imido compounds rapidly became the 
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most studied of group 4 and have revealed novel chemistry" including C-H bond 

activation," [2+2] cycloaddition,' and use in titanium nitride film deposition processes." 

The documented reactivity associated with the M=NR moiety involving zirconium has been 

more varied. The nucleophilic character of the imido nitrogen has been utilized in 

hydroamination catalysis," dihydrogen activation," and the formation of a wide variety of 

metallacycles Avith substrates ranging from azidotrimethylsilane and benzaldehyde 

N-phenylimine* to ethylene.^ Alkynes, isocyanates, and isocyanides have produced isolable 

[2+2] cycloaddition products as well (Scheme Studies of hydroamination and 

hydrocarbon activation involving zirconium imido complexes illustrate the need for further 

investigations utilizing different ancillary ligands."''^ We have recently explored the 

chemistry of tetravalent titanium and tin metalloporphyrin complexes containing amido and 

imido ligands (Scheme 2)." The metals in the titanium and tin hexa-coordinate complexes 

reside in the plane of the porphyrin and thus have the ancillary ligands situated in a trans-

configuration. In comparison, the larger congeners of group 4 have the metal displaced 

substantially above the porphyrin by ~ 1 A. This generates a c/5-arrangement of unidentate 

substituents which is slightly more sterically confined relative to metallocene analogues.'^ A 

similar coordination environment is seen in the more flexible and less sterically demanding 

tetramethyldibenzotetraaza[14]annulene (TMTAA) ligand. For example, the imido complex 

of Zr(TMTAA) includes a bound pyridine cis to the nitrene group.^° Monomeric zirconium 

and hafiiium metalloporphyrin chemistry has been explored with a wide variety of ligands, 

though all are Umited to formal single bonds between the metal and ligand.'' Herein we 

describe the first isolation and reactivity of zirconiimi and hafiiium metalloporphyrin imido 
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complexes as well as the characterization of N,0-bound ureato(2-) and guanidino(2-) 

derivatives. 

Experimental 

General Procedures. All manipulations were performed under an inert atmosphere 

of nitrogen using a Vacuum Atmospheres glovebox equipped with a Model M040-1 Dri-

Train gas purifier. All solvents were rigorously degassed and dried prior to use. Benzene-

d^, toluene, and hexane were fi'eshly distilled fi'om purple solutions of sodium benzophenone 

and brought into the glovebox without exposure to air. The dichloro complexes (TTP)ZrCl2 

and (TTP)HfCl2 were prepared according to published procedures,*' but were recrystallized 

from CH2Cl2/hexane prior to use. Commercially purchased compounds, /7-toluidine, 2,6-

diisopropylaniline, BuNCO, and BuNCS (Aldrich) were dried over activated neutral 

alumina. The compounds Zr(Ar''^Cl2(THF)2,"BuNCSe,^ and LiNHAr''*'' were prepared 

from literature procedures. 'H NMR data were recorded at 20.0 °C, unless otherwise stated, 

on either Varian VXR (300 MHz) or Bruker DRX (400 MHz) spectrometers. Chemical 

shifts were referenced to proton solvent impurities (6 7.15, CgDjH). UV-vis data were 

recorded on a HP8452A diode array spectrophotometer and reported as in nm (log 6). 

Elemental analyses (C, H, N) were performed by Iowa State University Instrument Services. 

(TTP)Zr=NAr'^, 1. Method 1: To a toluene solution (ca. 20 mL) of (TTP)ZrCl2 

(3S2.6 mg, 0.424 mmol) at -2SC was added a slurry of LiNHAr*^ (166.4 mg, 0.908 mmol) 

in toluene (ca. 6 mL). This solution slowly darkened to a red color upon warming to 25 °C. 

After 2 h, the solution was filtered over celite. The filtrate was concentrated in vacuo to a 



www.manaraa.com

93 

black oil. This residue was triturated with hexanes (ca. 12 mL), filtered, and dried in vacuo 

to afford dark blue 1 (370.4 mg, 93% yield). Analytically pure crystalline samples could be 

obtained by layering a toluene solution with hexanes (1:2 V:V), allowing to stand at -15 °C, 

filtering, and drying the solid in vacuo. 'H NMR (CgDs, 300 MHz): 9.17 (s, 8H, /?-H), 8.26 

(d, 4H, = 8 Hz, meso-Cefl^CH^), 7.97 (d, 4H, VH = 8 HZ, meso-Cffl^CHj), 7.28 (dd, 

8H, 'J„.H = 8 Hz, meso-CfP^CHj), 6.08 (s, 3H, m-, 2.42 (s, 12H, meso-C^^CHi), 

0,18 (m, 2H, 0.00 (d, 12H, = 7 Hz, -CHMe^). "C NMR (CDzClj, 400 

MHz): 153.8, 144.3, 143.6, 142.8, 139.9, 138.9, 137.9, 133.8 (o-tolyl), 133.0 (o-tolyl), 

132.6, 132.4 (/J^pyrrole), 130.0, 129.4 (w-tolyl), 124.3, 119.5 (m-Ar''^, 115.0 (p-Ar'^, 

27.8 (-CHMej), 26.1 (-CUMe^, 25.7 (p-A/eCgH,). UV/vis (benzene): 544 (4.32), 439 

(shoulder, 4.44), 420 (5.56), 398 (shoulder, 4.53). Anal. Calcd. for CgoHjjNjZr: C, 77.05; 

H, 5.71; N, 7.49. Found: C, 76.66; H, 5.97; N, 7.02. Method 2: A round bottom flask 

was charged with Zr(NAr'^Cl2(THF)2 (171.9 mg, 0.357 mmol) and (TTP)Lij(THF)2 (119.3 

mg, 0.173 mmol). Toluene (ca. 20 mL) was added and the reaction mixture was allowed to 

stir at ambient temperature for 18 h. The dark red solution was fihered over celite and the 

filtrate reduced to dryness in vacuo. Recrystallization fi-om toluene/hexanes at -25 

afforded 1 (126 mg, 78% yield). 

(TTP)Hl=NAr'^, 2. To a rapidly stirred toluene solution (ca. 15 mL) of (TTP)HfCl2 

(212.6 mg, 0.232 mmol) at -25 ®C was added a slurry of LiNHAr'*' (89.6 mg, 0.489 mmol) 

in toluene (ca. 6 mL). The solution became dark red upon warming to 25 °C over 2 h. The 

solution was then filtered over celite. The filtrate was concentrated in vacuo to a black oil. 

This residue was triturated with hexanes (ca. 12 mL), filtered, washed with hexanes (4x4 
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mL), and dried in vacuo to afford dark blue 2 (143 mg, 60% yield). Crystals were grown 

analogously to 1. 'H NMR (CgDj, 300 MHz): 9.17 (s, 8H, /?-H), 8.23 (dd, 4H, = 8 

Hz, = 2 Hz, meso-C^H^CH^X 7.97 (dd, 4H, = 8 Hz, = 2 Hz, meso-CJfi^CH^), 

7.31 (d, 4H, \.a = 8 Hz, mwo-Cg/Z^CH,), 7.25 (d, 4H, = 8 Hz, meso-CJf^CHi), 6.16 

(d, 2H, ^JH.H = 8 HZ, 6.04 (t, IH, = 8 Hz, p-C^Hj), 2.41 (s, 12H, meso-

0.17 (m, 2H, -CHMe^, 0.00 (d, 12H, = 7 Hz, -CHA/e^). UV/vis (benzene): 

542 (4.52), 419 (5.67), 397 (shoulder, 4.80). Anal. Calcd. for CeoHjjNsHf: C, 70.47; H, 

5.22; N, 6.85. Found: C, 70.39; H, 5.25; N, 6.54. 

(TTP)Hf(NHC6H4-/>-Me)2,3. A slurry of (TTP)HfCl2 (252.6 mg, 0.275 mmol) and 

LiNH(^MeCfiH4) (67.7 mg, 0.60 mmol) in hexanes (ca. 15 mL) was stirred for 10 hours at 

25 °C at which time the dark red suspension was fihered. The solid was transferred to a 

clean fritted filter and washed through with CH2CI2 (2x2 mL). The resulting solution was 

taken to dryness to yield blue microcrystalline 3 (172 mg, 59% yield). 'H NMR (CgDg, 300 

MHz): 9.17 (s, 8H, /?^H), 8.24 (d, 4H, = 7 Hz, meso-C^^CH^), 7.88 (d, 4H, ^JH.H = 7 

Hz, meso-C^H^CHj), 7.28 (br, 8H, meso^C^^CH3X 6.13 (d, 4H, = 8 Hz, /n-tolyl), 4.27 

(d, 4H, 'Jh.h = 8 Hz, o-tolyl), 2.40 (s, 12H, meso-Cfi^CH^), 1.74 (s, 6H, p-A/eQHJ, 0.96 

(s,2H,N^. UV/vis (benzene): 544 (4.44), 418 (5.56), 398 (shoulder, 4.80). 

(TTP)Zr(»7'-NAi^C(=N«u)0), 4a. A solution of (TTP)Zr=NAr'^ (313 mg, 0.334 

mmol) and 'BuNCO (250 L, 2.19 mol) in toluene (ca. 15 mL) was stirred for 13 h, reduced 

to dryness in vacuo and recrystallized from a toluene solution layered with heptane at -25 ®C 

for 1 day to yield microcrystalline dark blue 4a (112 mg, 32% yield). 'H NMR (CgDg, 300 

MHz): 9.13 (s, 8H, flW), 8.13 (d, 4H, = 8 Hz, meso-CeH^CH^l 7.87 (d, 4H, VH = 8 
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Hz, meso-C^jCH^), 7.29 (dd, 8H, VH = 8 HZ, meso-C^JCH;), 6.79 (t, IH, X-H = 8 HZ. 

p-CJi^), 6.60 (d, 2H, = 8 Kz, 2.40 (s, 12H, weso-QH^C/Tj), 0.82 (d, 6H, 

H = 7 Hz, -CHA/gj), 0.42 (d, 6H, = 7 Hz, -CH(C/^3)2), 0.35 (s, 9H, N-CMej), -0.51 (m, 

2H,-CHMt2). "CNMR(QD«,400MHz): 152.5,149.6,142.7,140.6,139.0, 138.0, 

135.5, 133.6, 132.8, 127-130 (QDs), 125.6, 123.4, 121.6, 50.4, 30.4, 27.1, 25.2, 24.2, 21.4. 

UV/vis (toluene); 550 (4.65), 439 (shoulder, 4.94), 418 (5.73). Anal. Calcd. for 

QsHcNjOZr: C, 75.47; H, 6.04; N, 8.12. Found: C, 75.24; H, 6.14; N, 7.94. Exposure to 

water results in rapid decomposition to yield the urea, Ar''*'NHC(0)NH'Bu, as detected by 

GCMS: Calcd. (found) C,7H,gN,0 276.42 (277) m/z. 'H NMR (QD^, 300 MHz): 7.16 (m, 

IH,p-CJfj), 7.08 (d, 2H, 4.02 (s, IH, N//), 3.57 (m, 2H, -CHMe^), 1.23 (d, 12H, 

-CHMfij), 1.18 (s, 9H, N-CiWej). 

(TTP)Zr(7'-N'BuC(=NAI^O), 4b. A solution of (TTP)Zr=NAr"^ (330 mg, 0.353 

mmol) and BuNCO (250 L, 2.19 mol) in toluene (ca. 15 mL) was stirred for 13 h, reduced 

to dryness in vacuo and recrystallized from toluene/heptane at -25 °C over 17 days. 

Filtration yielded microcrystalline red 4b which was washed with 12 mL of toluene (104.5 

mg, 29% yield). By 'H NMR one-half equivalent of toluene was observed as a solvate. 'H 

NMR (CA. 400 MHz): 9.09 (s, 8H, y^H), 8.23 (d, 4H, = 6 Hz, meso-CJI.CHi), 7.83 

(d, 4H, %.H = 6 Hz, meso-C^^CH^), 7.38 (d, 4H, = 6 Hz, meso-C^^CHj), 7.25 (d, 

4H, = 6 Hz, meso^^^CKj), 6.98 (m, IH, 6.91 (d, 2H, 2.41 (s, 

12H, meso-C^^CHj), 1.84 (spt, 2H, -CHMe^, 0.78 (d, 6H, = 7 Hz, -CHMe.J, 0.31 (d, 

6H, VH = '7Hz,-CHWe2).-014(s,9H,N-CA/ej). "C NMR (CgD^, 400 MHz): 154.3, 

150.1, 145.4, 139.6, 138.0, 137.8, 135.4 (o-tolyl), 133.6 (o-tolyl), 132.8 (/^-pyrrole), 127-
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129 solvent, 125.6 (m-tolyl), 121.4 (w-Ar"^, 120.6 53.0 (-CCMe),), 29.0 (C(A/e)3), 

28.0 (-CH(Me)2), 23.6 (-CKOWe)^), 23.1 21.4 (p-A/eC«Hj). UV-vis (toluene): 

551 (4.31), 4.39 (shoulder, 4.57), 417 (5.46). Anal. Calcd. for C^ sH^NgOZr; C, 76.14; H, 

6.16; N, 7.78. Found: C, 76.21; H, 6.37; N, 7.32. Exposure to water results in rapid 

decomposition to yield the urea Ar'^'T«JHC(0)NH'Bu as detected by GCMS. 

(TTP)Hf(i;^-NAr'^C(=N'Bu)0), 5a. A solution of (TTP)Hf=NAi^^ (324 mg, 0.317 

mmol) and 'BuNCO (54 L, 0.473 mmol) in toluene (ca. 10 mL) was stirred for 4.5 h at 25 

°C. The solution was filtered and the fikrate was reduced in vacuo to produce an oily 

residue. The residue was triturated with 10 mL of hexanes and filtered to yield blue 5a (228 

mg, 64% yield). NMR (C^, 300MH2): 9.16 (s, 8H, /?-H), 8.12 (d, 4H, = 7 Hz, 

meso-CfflJCRi), 7.86 (d, 4H, ^JH.H = 7 HZ, meso-C^jCH^), 7.29 (dd, 8H, X-H = 7 HZ, 

meso-CSS,l{;), 6.11 (t, IH, p-Ce/Zj), 6.62 (d, 2H, /n-Cg/Zj), 2.40 (s, 12H, meso-C^HJCH;), 

0.84 (d, 6H, 'JH.H = 7 HZ, -CHA/eJ, 0.43 (d, 6H, = 7 Hz, -CHWej). 0-34 (s, 9H, N-

CA/ej), -0.53 (m, 2H, -C/ZMej). '^CNMR(QD«, 400 MHz): 151.9, 149.7, 143.5, 140.4, 

138.9, 138.0, 135.5 (o-tolyl), 133.6 (o-tolyl), 133.0 (/?-pyrrole), 129-127 solvent, 125.6, 

123.5 (p-Ar^, 121.5 (m-Ar-^, 50.3 (-C(Me)3), 30.4 (-C(Me)3), 26.9 (-CH(Me)2), 25.3 

(-CH(Me)2), 24.4 (rCR{Me)^, 21.4 UV/vis (toluene): 549 (4.40), 416 (5.47). 

Anal. Calcd. for QjH^NeOHf: C, 69.60; H, 5.57; N, 7.49. Found: C, 69.20; H, 5.53; N, 

7.30. Exposure to water results in rapid decomposition to yield the urea 

Ar'^^C(0)NH'Bu. 

(TTP)Hf(if-NAr'^C(=NAr'^0), 6. A solution of (TTP)Hf=NAr'^ (290.7 mg, 

0.284 mmol) and Ar^^CO (47 L, 0.412 mmol) in toluene (ca. 40 mL) was stirred for 10 h 
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at 25 °C. The solution was filtered and the filtrate was reduced in volume (ca. 13 mL) in 

vacuo. The concentrated solution was layered with hexanes (ca. 13 mL) and placed in 

fi-eezer at -25 °C overnight. This solution was filtered and the filtrate reduced to dryness in 

vacuo. The residue was recrystallized fi'om a toluene solution layered with hexanes at -25 

°C overnight. Compound 6 was collected as a dark blue powder (81 mg, 25% yield). 'H 

NMR (C7D,, 400 MHz); 9.04 (s, 8H, /?-H), 7.84 (d, 4H, VH = 7 HZ, meso-C^JCU^), 7.79 

(d, 4H, = 7 Hz, meso-C^JCa;), 7.36 (d, 4H, ^JH.H = 7 HZ, meso-C^JCU;), 7.29 (d, 

4H, ^JH.H = 7 HZ, meso-C^.CR,) 6.94 (t, LH,p-QH3), 6.84 (t, 6.79 (d, 2H, 

m-CJii), 6.61 (d, 2H, 2.44 (s, 12H, meso-C^jCH;), 1.93 (m, 2H, 0.62 

(d, 6H, 0.44 (d, 6H, -CHWeJ, 0.33 (bs, 12H, -CHWej), -0.07 (m, 2H, -CZ/Mej). 

"CNMR(CsD«,400MHz). 151.5, 149.6, 148.8, 144.1, 140.7, 138.7, 138.6, 138.1, 135.5, 

132.9 (/^-pyrrole), 132.7, 130-126 solvent, 125.9, 123.9, 122.0, 121.7, 120.8, 26.9(-

CH(Me)2), 26.8(-CH(Me)2), 26.5(-CH(Me)2), 24.7(-CH(Me)2), 23.8(-CH(A/e)2), 21.4(p-

MeCgHJ. UV/vis (toluene): 549 (4.27), 415 (5.45). Anal. Calcd. for CTsHToNgOHf: C, 

71.52; H, 5.76; N, 6.86. Found; C, 69.20; H, 5.53; N, 7.30. This compound appeared pure 

by 'H NMR, but elemental analyses were routinely low in carbon by 1% or more. Exposure 

to water results in rapid decomposition to yield the urea Ar''''NHC(0)NHAr^*^. 

(TTP)Hf(i7'-NAi^C(=N^r)NTr), 7a. To a stirred solution of2 (294.7 mg, 0.288 

mmol) in toluene (ca. 12 mL) was added 1,3-diisopropylcarbodiimide (69 L, 0.441 mmol). 

The mixture was allowed to stir at ambient temperature for 2 hours. This dark red solution 

was filtered and reduced to dryness in vacuo. The residue was washed with hexanes (2x6 

mL) to afford dark blue 7a (147.1 mg, 44% yield). Crystals suitable for X-ray diffraction 
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'H NMR 400 MHz): 9.13 (s, 8H, 8.22 (d, 4H, = 8 Hz, meso-C^JCR;), 

7.76 (d, 4H, 'JH.„ = 8 HZ, meso-CJIJCli^), 7.35 (d, 4H, = 8 Hz, meso-C^jCR^i), 7.24 

(d, 4H. %.H = 8 Hz, we50-C^«CH3), 6.85 (t, IH, %.y, = 8 Hz, p-CJI^), 6.68 (d, 2H, = 

8 Hz, 2.40 (s, 12H, meso-C^^CH^), 1.63 (m, IH, = 6 Hz, N-C/ZMcj), 0.96 

(d, 6H, %.H = 7 Hz, CfiHj-CHWfej), 0.46 (dd, 12H, N-CHA/ej and 0.13 (bd, 

7H, 'JH.H = 6 HZ, N-CHWCJ and N-C//Me,J, -0.31 (m, 2H, VH = 7 HZ, CgHj-C/ZMej). 

COSY was used to identify protons in overlapping signals. The 2,6-di-isopropyl resonances 

on the NAr'^ fragment were definitively assigned by HMBC. "C NMR (C^Dg, 200 MHz): 

152.0, 150.3, 146.1, 142.3 (o-Ar'^, 139.1, 137.9, 135.3 (o-tolyl), 133.7 (o-tolyl), 132.8 

(/^-pyrrole), 130-126 solvent, 125.3, 122.8 (p-Ai"^, 122.7 47.38, 26.8, 25.6, 24.5, 

22.8, 21.4. UV/vis (toluene): 549 (4.32), 416 (5.42). 'H NMR showed that one equivalent 

of toluene remained after extended drying in vacuo. Anal. Calcd. for C57H67N7Hf*C7H,: C, 

71.62; H. 6.09; N, 7.90. Found: C, 71.58; H, 6.23; N, 7.70. Exposure to water results in 

rapid decomposition to yield the guanine Ar'''T^C(=N'Pr)NH'Pr as detected by GCMS: 

calcd. (found) Ci^jjNj 303.49 (305 [M + H"]). 

Reaction of 2 with Aniline. An NMR tube equipped with a Teflon stopcock was 

charged with 2 (10.36 mg, 10.13 mol), PhjCH (88.5 mL, 0.1397 M, 12.36 mol) as an 

internal standard, HjNPh (2.9 L, 31.8 mol) and C^D^ (ca. 0.6 mL). This solution was 

allowed to equilibrate over 11 hours at 25 °C at which time there were present in solution, 

HjNAi^ (9.89 mol), HjNPh (14.8 mol), (TTP)Hf(NHAr'^(NHPh) (1.5 mol), and 

(TTP)Hf(NHPh)2 (7.32 mol). K = 3.3 ± 0.3. 'HNMR (CgDs, 400 MHz); 9.16 (s, fi-H, 
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(TTP)Hf(NHPh)2 and (TTP)Hf(NHPh)(NHAr''^), 8.22 (bd, meso-CJIJCli^ 

(TTP)Hf(NHPh)2 and (TTP)Hf(NHPhXNAr''^)2. 7.86 (bd, meso-C^JCH^ 

(TTP)Hi(NHPh)2 and (TTP)Hf(NHPh)(NAr'^), 7.26 (b, meso-C^JCH^^ (TTP)Hf(NHPh)2 

and (TTP)Hf(NHPh)(NAr''^), 6.91 (t, 6.71 (t,6.52 {l,p-CSi 

(TTP)Hf(NHPh)(NHAr'^), 6.32 (m, m-Yi^h and m-NHP/i of (TTP)Hf(NHPh)2), 6.06 

(m, p-HNPA of (TTP)Hf(NHPh)2 and (TTP)Hf(NHPh)(NHAr"^), 4.24 (d, o-C^^ of 

(TTP)Hf(NHPh)2), 4.06 (d, o-C^i of (TTP)Hf(NHPh)(NHAr^^), 3.16 (bs, //jNAr^^, 2.73 

(bs, /fjNPh), 2.62 (m, HjNAr'^, 2.39 (s, meso-C^UJCH^), 113 (d, HjNAr"^, 0.93 (s, 

(TTP)Hf(N/fPh)2 and (TTP)Hf(N/n>h)(N//Ar''^), 0.38 (d, (TTP)Hf(NHPh)(NHA/^, 0.14 

(d, (TTP)Hf(NHPh)(NHAr"^, -0.05 (m, (TTP)Hf(NHPh)(NHAr'^. 

Decomposition of 4a. An NMR tube equipped with a Teflon stopcock was charged 

with 4a (11.9 mg, 11.5 mol), PhjCH (87.5 mL, 0.1455 M, 12.73 mol) as an internal 

standard, and C^Dg (ca. 0.6 mL). After 238 h at 80 °C, 4a had been consumed, compounds 

4b (1.24 mol), [(TTP)ZrO]2 (0.42 mol), and Ar^'^=C=N'Bu (9.5 mol, 83% yield by NMR) 

were detected. NMR (CsD6, 300 MHz): Ar'^=C=N'Bu: 7.07 (m, 3H, w-, p-C(P^, 

3.64 (spt, 2H 1.24 (d, 12H, 1.18 (s, 9H, WBu). [(TTP)ZrO]2: 8.74 (s, 

8H, /?-H), 7.95 (d, 4H, meso-C^JCR;), 7.56 (d, 4H, meso-C^JZYi;), 7.42 (d, 4H, meso-

CJiJCH;), 2.45 (s, 12H, meso-C^JCH^). 

Decomposition of 4b. An NMR tube equipped with a Teflon stopcock was charged 

with 4b (7.32 mg, 7.58 mmol), PhjCH (90.0 mL, 0.1455 M, 13.1 mmol) as an internal 

standard, and C7D, (ca. 0.6 mL). After 228.5 h at 110 °C, 4b had been consumed, 

[(TTP)ZrO]2 and Ar'*TSf=C=NBu (6.96 mmol, 92% yield by NMR) were produced. 'H 
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NMR: Ar'^=C=lSnBu: 3.60 (m, 2H, -Cmiez), 1.23 (d, 12H, 1.20 (s, 9H, 'Bu\ 

all other signals obscured by solvents. [(TTP)ZrO]2:^ 8.69 (s, 16H, ^H), 7.81 (d, 8H, 

meso-C^JZli;), 7.61 (d, 8H, meso-CS*Cli;), 7.43 (d, 8H, meso-CJHjCHiX 7.18 (d, 8H, 

meso-CJJjCili), 2.51 (s, 24H, meso-C^S-Hi). 

Reaction of 1 with 'BuNCS. An NMR tube equipped with a Teflon stopcock was 

charged with 1 (17.43 mg, 18.63 mol), PhjCH (92.0 mL, 0.1397 M, 12.85 mol) as an 

internal standard, 'BuNCS (2.8 L, 23.2 mol), and C^Dg (ca. 0.6 mL). After 21 h at 25®C, I 

had been consumed and (TTP)Zr(;f-NAr'^C(=N'Bu)S) (4.33 mol), [(TTP)ZrS]2 (0.92 mol), 

and Ar'*^=C=N'Bu (12.35 mol) had been produced. After an additional 70 h at 25°C, a 

large amount of brown precipitate was present as well as [(TTP)ZrS]2 (0.21 mol) and 

Ar'PTSI=C=N'Bu (16.91 mol, 91% yield by NMR). 'H NMR (CgDs, 300 MHz): 

Ar'^=C=N'Bu: 7.07 (m, N-2,6-('Pr)Cfi^3), 3.64 (m, N-2,6-('Pr)CfiH3), 1.24 (d, N-2,6-

(/'r')C<iH3), 1.18 (s, N-'5m). [(TTP)Zr(7^-NAr'^C(=N'Bu)S)]: 9.08 (s, 8H, /?-H), 8.30 (d, 

4H, OTe50-C<i^4CH3), 7.69 (d, 4H, meso-CffijCHy), 7.35 (d, 4H, meso-C^^CU^), 7.21 (d, 

4H, meso-CSS^'Ri). 6.96 (t, IH, p-C^^), 6.76 (d, 2H, m-CSz), 2.39 (s, 12H, meso-

CgH^C^j), 1.02 (d, 6H, -CHWej), 0.52 (s, 9H, N-QWfea), 0.51 (d, 6H, -CHMe^, -0.13 (m, 

2H, -C/ZMej). [(TTP)ZrS]2: 8.74 (s, 8H, jS-H), 7.95 (d, 4H, meso-Ceff^CHj), 7.56 (d, 4H, 

meso-Ceff.CHj), 7.42 (d, 4H, meso-Cgff^CHj), 2.45 (s, 12H, meso-CsH^Cffj). 

Reaction of 2 with 'BuNCS. An NMR tube equipped with a Teflon stopcock was 

charged with 2 (13.88 mg, 13.57 mol), Ph3CH (67 mL, 0.1397 M, 9.36 mol) as an internal 

standard, BuNCS (1.8 L, 14.90 mol), and CgDg (ca. 0.6 mL). After 191 hours at 25 ®C, 2 

was still present (0.44 mol), as well as (TTP)Hf(;f-NAr'^C(=N'Bu)S) (9.47 mol). 
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[(TTP)HfS]2 (1.56 mol), and Ar^^=C=>rBu (2.75 mol). The temperature was 

subsequently raised to 80°C for 21 hours to yield a nearly colorless solution containing 

[(TTP)HfS]2 (1.36 mol) and Ar^^=C=N'Bu (12.17 mol, 90% yield by NMR). 'H NMR 

(CfiDg, 300 MHz): [(TTP)Hf(;7^-NAi^'^C(=N'Bu)S)]: 9.12 (s, 8H, /?-H), 8.29 (d, 4H, meso-

Cg^4CH3), 7.69 (d, 4H, meso-C^jCH;), 7.35 (d, 4H, meso-C^jCR;), 7.21 (d, 4H, meso-

Ce^^CHj), 6.94 (t, IH, p-Cs/Zj), 6.77 (d, 2H, 2.39 (s, 12H, meso-C^JCH^), 1.04 

(d, 6H, 0.52 (s, 9H, N-CMes), 0.51 (d, 6H, -CHWej), -0.15 (m, 2H, -CZ/Me,). 

[(TTP)HfS]2: 8.75 (s, 8H, fi-K), 7.97 (d, 4H, meso-C^JCR^), 7.55 (d, 4H, meso-

7.42 (d, 4H, meso-C^JCYi;), 2.45 (s, 12H, meso-C^U^CH^). 

Reaction of 1 with 'BuNCSe. An NMR tube equipped with a Teflon stopcock was 

charged with 1 (19.32 mg, 20.66 mol), PhjCH (71 mL, 0.1397 M, 9.92 mol) as an internal 

standard, BuNCSe (7.5 mg, 46.27 mol), and QDg (ca. 0.6 mL). After 8 hours at 25°C, 1 

had been consumed and a large amount of brown precipitate had formed. Ar'^=C=N'Bu 

(17.71 mol) was produced in 86% (NMR yield). No intermediates were detected during this 

reaction. 

Reaction of 2 with 'BuNCSe. An NMR tube equipped with a Teflon stopcock was 

charged with 2 (16.64 mg, 16.27 mol), PhjCH (85 mL, 0.1455 M, 12.37 mol) as an internal 

standard, "BuNCSe (10.1 mg, 62.3 mol), and CgD^ (ca. 0.6 mL). After 109 hours at 25°C, 

Ar'^=C=NBu (13.59 mol, 84% yield) had formed. No intermediates were detected during 

this reaction. 

Isomerization of 4a to 4b. An NMR tube equipped with a Teflon stopcock was 

charged with 4a (23.2 mg, 22.45 mol), PhjCH (90 mL, 0.1397 M, 12.57 mol), as an internal 
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standard, and (ca. 0.6 mL). Aiter 912 hours at ambient temperature the progress of 

the reaction had slowed markedly and only a trace of 4a remained (0.70 mol, 97% 

consumption). Quantification of 4b was precluded by its insolubility. However, X-ray 

diffraction quality crystals precipitated out during the reaction. No additional products or 

intermediates were observed throughout this reaction, ti/2 » 670 hours. 

Isomerization of 5a. An NMR tube equipped with a Teflon stopcock was charged 

with Sa (16.86 mg, 15.03 mol), PhjCH (92.5 mL, 0.1397 M, 12.92 mol), and C^Dg (ca. 0.6 

mL). After 534 hours at 80 °C, the progress of the reaction had slowed markedly and only a 

trace of 5a remained. The product, (TTP)Hf(;^-N'BuC(=NAr''^0), (14.36 mol) was 

present in 94% yield. No additional products or intermediates were observed throughout 

this reaction, t,;2« 250 hours. 'H NMR (CgD^, 300MHz): 9.12 (s, 8H,/?-H). 8.24 (b, 4H, 

meso-CffljCn;), 7.83 (b, 4H, meso-CSJCfH;), 7.38 (b, 4H, meso-C^jCU;), 7.26 (b, 4H, 

weJO-Ce^^CHj), 6.93 (m, 3H, m-,p'C^y), 2.41 (s, 12H, meso-C^li^CH;), 1.83 (m, 2H, 

-CifMcz), 0.78 (d, 6H, = 7 Hz, 0.32 (d, 6H, = 7 Hz, -0.14 (s, 

9H, N-CA/Cj). 

Isomerization of 7a. Complex 7a was synthesized in situ in an NMR tube equipped 

with a Teflon stopcock. The tube was charged with 2 (12.38 mg, 12.10 mol), 'PrN=C=NTr 

(6.5 L, 41.5 mol), PhjCH (89 mL, 0.1455 M, 12.95 mol), and (ca. 0.6 mL). The 

formation of 7a was complete in minutes. The sample was then heated at 80°C for 488 

hours, tia" 108 hours. The product, (TTP)Hf( ;f-NTrC(=NAr'^N'Pr) (7b), (11.67 mol) 

was produced in 96% (NMR yield). No additional products or intermediates were observed 

throughout this reaction. 'H NMR (CgDj, 300 MHz): 9.12 (s, 8H, /?-H), 8.59 (d, 4H, ^JH.H 
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= 7 Hz, meso-C ĴCn;), 7.76 (d, 4H, XH = 7 HZ, meso-C^JCH;), 7.36 (d, 4H, VH = 7 

Hz, meso-C^jCa;), 7.25 (d, 4H, = 7 Hz, weso-Cg^^CHj), 6.69 (d, 2H, 6.59 

(m, IH, p-C^i), 2.40 (s, 14H, meso-C^^CH^ and NC^Cj), 1.62 (spt, 2H, CgHj-

0.70 (d, 12H, = 7 Hz, -0.18 (b, 12H, N-CHWej). The 

methine proton resonance of the NPr group was found by COSY to overlap with the meso-

C^JCHi signal at 2.40 ppm. The respective isopropyl groups were definitively assigned by 

HMBC. 

Structure Determinations of (TTP)Zi=NAr^ (1), (TTP)Hf=NAr®^ (2), 

(TTP)Zr(if-NAr^C(=NCBu)0) (4a), (TTP)Zr(;72-N»BuC(=N(Ai^O) (4b), and 

(TTP)Hf(;f-NAr''''C(=N'Pr)N'Pr) (7a). Crystal data is found in Table 1. Compounds 1 

and 2 were treated similarly by attachment to a glass fiber and mounting on a Siemens 

SMART system for data collection at 173(2) K. An initial set of cell constants was 

calculated fi'om reflections harvested fi'om three sets of 20 fi-ames. These initial sets of 

frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This 

produced orientation matrices determined fi-om 208 and 218 reflections for compounds 1 

and 2, respectively. Final cell constants were calculated fi'om a set of7055 and 8028 strong 

reflections fi'om the actual data collection, respectively, for 1 and 2. Three major swaths of 

fi'ames were collected with 0.30*^ steps in a>. The data were merged into a unique set as 

indicated by the data collection ranges. The space groups were determined on the basis of 

systematic absences and intensity statistics, and a successful direct-methods solution was 

calculated which provided most non-hydrogen atoms fi'om the E-map. Several full-matrix 

least squares/difference Fourier cycles were performed which located the remainder of non-
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hydrogen atoms, which were refined with anisotropic displacement parameters. All 

hydrogen atoms were placed in ideal positions and refined as riding atoms with relative 

isotropic displacement parameters. Both complexes were found with one toluene and one-

half heptane in the unit cell. The heptane was disordered over an inversion center such that 

three carbons lie on one side and four on the other. Therefore, the third and fourth carbon 

atoms are terminal methyl groups part of the time. All calculations were performed using 

SGI INDY R4400-SC or Pentium computers using the SHELXTL V5.0 program suite.^* 

Crystals of 4a, 4b, and 7a were treated in an analogous manner to that of 1 and 2. 

Systematic absences in the diffraction data were uniquely consistent for space groups 

denoted in Appendix A. The structures were solved using direct methods, completed by 

subsequent difference Fourier synthesis and refined by full-matrix least-squares procedures. 

All nonhydrogen atoms were refined with anisotropic displacement coefficients unless 

otherwise specified. All hydrogen atoms were treated as idealized contributions. The 

refinement of 7a revealed the presence of several disordered solvent molecules. The 

SQUEEZE filter of the program PLATON^' was applied to identify and account for one and 

a half solvent molecules of toluene present in the asymmetric unit of 7 a along with one 

molecule of the complex. In the case of 4b, there are two and one-half molecules of benzene 

also present in the asymmetric unit. The half molecule is a part of a benzene molecule 

residing on an inversion center. The solvent molecules were refined isotropically. The 

SQUEEZE filter was also applied to 4a to identify and account for one-half of a toluene 

molecule and one-half of a heptane molecule present in the asymmetric unit. 
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Crystallographic data in CIF format are deposited at the Cambridge Crystallogranhic 

Data Center. Deposition numbers are 105601 (1), 105602 (2), 105603 (4a), 105604 (4b), 

and 105605 (7a). 

Results 

Synthesis and Characterization of Imido Complexes. Treatment of cis-

(TTP)ZrCl2 with 2 equiv of bulky lithium amide reagents, LiNHR (R = 2,4,6-Me3C6H2, 

2,4,6-'Bu3C6H2, 2,4,6-Ph3C6H2, 2,6-TrC6H3), in toluene resulted in the formation of new 

terminal imido complexes (eq 1). Of these new imido compounds, the 2,6-diisopropylphenyl 

(TTP)ZrCl2 + 2 LiNHR -»• (TTP)Zi=NR + 2 LiCl + NHjR (1) 

derivative (TTP)Zr=NAr''^, complex 1, was the most amenable to isolation and purification. 

The analogous Hf complex, (TTP)Hf=NAr''*', complex 2, was also synthesized using the 

same metathesis reaction. Complex 1 alternatively could be prepared by the reaction of 

Zr(NAr'^^l2(THF)2' with (TTP)Li2(THF)2. All of these new imido complexes are moisture 

sensitive. In addition, the Zr imido complexes with mesityl, 2,4,6-tris-/-butylphenyl and 

2,4,6-triphenylphenyl substituents decomposed over time, precluding our ability to isolate 

analytically pure samples. The rate of this decomposition qualitatively followed the steric 

bulk of the substituent. However, with 2,6-diisopropylphenyi substituents, complexes 1 and 

2 could be kept in the solid state at ambient temperature under a N2 atmosphere for months. 

In solution at ambient temperature, complex 2 decomposed to uncharacterized diamagnetic 
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species over a matter of weeks, while 1 is stable in QD« at elevated temperatures (80°C) for 

several days. 

The *H NMR spectra of imido complexes 1 and 2 share the same approximate 

characteristics. Particularly diagnostic is the porphyrin ring current effect on the imido 

ligand protons. Consequently, the meta and para aryl protons of the imido exhibit upfield 

shifts of ~ 0.90 ppm relative to the free amine. The m-, and p-protons of HzNAr"^ occur at 

7.05 ppm (d) and 6.91 ppm (t), respectively. Thus, a well separated doublet (6.16 ppm, m-

H) and triplet (6.04 ppm, p-H) for complex 2 is observed. In comparison, complex 1 

exhibits a three-proton singlet at 6.08 ppm for the m- and /7-ArPr protons. The aryl 

isopropyl groups are also shifted upfield relative to the corresponding free amine resonances 

at 2.63 ppm (spt) and 1.14 ppm (d). For example in complex 1, the methine muhiplet 

appears at 0.18 ppm and the methyl doublet occurs at 0.00 ppm. 

The crystal structures of compounds 1 (Fig. 1) and 2 (Fig. 2) are isomorphous. Each 

compound co-crystallizes with one toluene and one-half heptane per unit cell. As expected, 

metrical parameters are similar due to the nearly equivalent sizes of the metals. Most 

structurally characterized five-coordinate Zr and Hf imido complexes have been described as 

possessing a trigonal bipyramidal arrangement of the ligands around the metal. The 

geometry about the metals in complexes 1 and 2 is best described as distorted square-

pyramidal. The four pyrrole nitrogens of the porphyrin form the basal plane with an average 

froMLS-pyrrole Npo,-M-Npo, angle of 140° and 142°, respectively. Metal-N^^ bond lengths 

are 1.863(2) and 1.859(2) A for the Zr and Hf complexes, respectively. These values are 

well within the range of known alkyl and aryl substituted imido ligands for Zr and Hf 
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Figure 1. ORTEP representation of (TTP)Zr=NAr'^. Thermal ellipsoids drawn at 50% probability level. 
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Figure 2. ORTEP representation of (TTP)Hf=NAi'*'. Thermal ellipsoids drawn at 50% probability level. 
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complexes. Typical M-N^^ distances range from 1.826(1) to 1.876(4) A for zirconium'''" 

and 1.850(3) for hafiiium.^ Only a small deviation from linearity is observed in the M-

NS-C49 angles, 172.5(2) complex and 173.4(2) (complex 2). Similar metrical features have 

been reported for the corresponding bond angles of other imido complexes (164.5 to 179.5 

for Zr and 174.4 for Hf). The metal centers in other structurally characterized Zr and Hf 

metalloporphyrin complexes exhibit coordination numbers from six to eight. The range of 

out-of-plane distances for hexa-coordinated Zr(IV) and HflJV) porphyrin complexes is 0.84 

to 1.06 A.^ In comparison to these examples, the metals in the five coordinate complexes 1 

and 2 reside closer to the plane defined by the four pyrrole nitrogens. The metal atoms in 

complexes 1 and 2 are located 0.75 and 0.71 A above the N1-N2-N3-N4 plane, respectively. 

The smaller value observed for complex 2 is consistent with corresponding values in the 

congeners, [(TPP)Zr(0H)2(0)],; [(TPP)Hf(0H)2(0)], (1.057; 1.048 A) and 

(TPP)Zr(02CCH3)2; (TPP)Hf(0,CCH3), (1.036; 1.012 A).-' " 

A domed ruffling^ deformation of the porphyrin macrocycle, a common 

phenomenon with relatively large metals, is observed in both imido compounds, although to 

a lesser extent in complex 2. Deviations from the 24-atom porphyrin plane due to ru£Qing in 

complex 1 are 11 (C5), -8 (CIO), 19 (C15), and -10 (C20) pm. The resultant dihedral angles 

in complex 1 of the pyrrole rings containing Nl, N2, N3, and N4 relative to the mean 24-

atom porphyrin plane are 5.0, -2.6, 5.5, and -8.5°, respectively. 

Formation of Bis(Amide) Complexes. Treatment of complex 2 with excess aniline 

results in the complete disappearance of the starting imido complex. Two new bis(amido) 

complexes, (TTP)Hf(NHPh)2 and (TTP)Hfl[NHPh)(NHAr^, are produced as observed by 
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'H NMR. These two bis(amido) complexes are in equilibrium with the free amines as shown 

in eq 2 (K = 3.3 ± 0.3). The proton resonances of the coordinated aryl amido ligands are 

shifted upfield. For example, the o-QHj doublet of aniline appears at 6.34 ppm whereas the 

corresponding o-protons of the amide in (TTP)Hf(NHPh)2 appear at 4.24 ppm. The amide 

(TTP)Hf(NHAr''^(NHPh) + HjNPh (TTP)Hf(NHPh)2 + HzNAr"^ (2) 

NH protons are found at 0.93 ppm. Thus, in the presence of the less sterically demanding 

aniline, a bis(amido) is produced with concomitant loss of the bulkier 2,6-diisopropylphenyl 

amine. Although no new imido complexes were detected by NMR during this reaction, 

decomposition of the bis(amido) complexes to intractable products was observed over days 

at ambient temperature. Bulky amines, HjNR (R = 2,4,6-Me3C6H2, 2,4,6-'Bu3CsH2, or 

2,4,6-Ph3CsH2), do not react with complexes 1 or 2. Treatment of (TTP)HfCl2 with 2 

equivalents of Li>JH(QH4-/7-CH3) in hexanes affords the bis(amido), (TTP)Hf(NH-C5H4-/7-

CH3)2 (3). The amide NH protons are readily distinguishable in the 'H NMR at 0.96 ppm as 

a sharp singlet integrating as 2 protons. In freep-toluidine the NH protons appear at 2.74 

ppm (bs). 

[2+2] Condensation Products of Complexes 1 and 2 with R-NCO. Treatment of 

imido complex 1 with Bu-NCO at ambient temperature resulted in the rapid appearance of a 

new species, 4a, which was formulated as an addition product as monitored by 'H NMR. 

The new compound retains the 2,6-diisopropylphenyl fragment. It also exhibits a new nine-
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proton singlet at 0.35 ppm consistent with a bound /-butyl group. Moreover, the isopropyl 

methyl substituents give rise to two new doublets at 0.82 (6H) and 0.42 (6H) ppm. Heating 

a CgDc solution of 4a in an NMR probe to 323 K resulted in no broadening of the isopropyl 

signals. This observation suggested that the isopropyl methyl groups are diastereotopic. 

Further heating of compound 4a to 353 K in CgD^ for 238 h resuhed in the production of 1 

equiv of the carbodiimide, 'BuN=C=NAr'^. The production of carbodiimide suggests that 

compound 4a can be formulated as an ;7^-N,0-ureato complex (eq 3). The remaining metal 

complex was observed transiently by 'H NMR, but eventually precipitated out of solution. 

Initially this complex was formulated as a terminal oxo species, (TTP)Zr=0. However, this 

putative (TTP)Zr=0 complex did not react with excess BuNCO to form (TTP)Zr=N'Bu (eq 

4).® The metal byproduct has been identified as the dimeric species [(TTP)Zr]2C«-0)2.^'^ 

N'Bu 

Ai—N 

(3) 

O N'Bu 

+ 'BuNCO (4) 



www.manaraa.com

112 

Over days at 298 K in QD^, complex 4a isomerizes to a new complex, 4b. The 

ureato ligand is still retained as indicated by the presence of /-butyl and isopropyl resonances 

in the 'H NMR spectrum. However, all proton signals of complex 4b have shifted relative to 

those of complex 4a. For example, the /-butyl resonance of complex 4b has shifted upfield 

by 0.49 ppm to -0.14 ppm (s, 9H). The relative change on the isopropyl methyl protons is 

less drastic. These now appear at 0.31 (d, 6H) and 0.78 ppm (d, 6H). However, a much 

stronger shift is observed for the methine protons of the isopropyl groups. In complex 4a, 

this signal appeared at -O.S 1 ppm. The corresponding resonance for complex 4b is shifted 

substantially downfield to 1.84 ppm. 

Two candidates serve as possible structures for complex 4b. These are ;f-N,0- and 

7^-N,N-bound ureatos I and n shown below in Scheme 3. The strong downfield shift of the 

isopropyl methine signal suggests that the N-bound aryl group in complex 4b is fiirther fi-om 

the porphyrin ring than is its counterpart in complex 4a. Thus, structure I is most likely the 

correct formulation for complex 4b. Moreover, heating 4b at 383 K for 228.S h resulted in 

the production of'BuN=C=NAr''^ (92% by NMR). This reaaivity is also consistent with the 

N*Bu O 

I n 

Scheme 3. 
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N,0-bound isomer I. Final confirmation of the correct structure for complex 4b was derived 

fi'om synthesis of an analogue and by X-ray diffraction analysis (vide infra). 

Whereas complex 4a is formed within minutes at ambient temperature from the 

reaction of 1 and r-butyl isocyanate, the isomerization of 4a to 4b (eq S) requires » 38 days 

at 298 K in C«Dg. The production of carbodiimide was not observed during this 

transformation. 

The analogous Hf imido complex 2 also forms a kinetic ;7^-N,0-ureato complex, 5a, 

on treatment with 'BuNCO. The Hf reaction is much slower than that of Zr and takes 

several hours at 298 K. In addition, 5a isomerizes to a thermodynamic product, 5b, after 

heating at 353 K for 534 h in CjDg. Conversion of 5a to 5b occurs cleanly with no 

formation of carbodiimide even at 383 K. The kinetic isomers 4a and 5a both share similar 

spectroscopic characteristics, as do the thermodynamic products 4b and 5b. All four 

complexes, 4a, 4b, 5a, and 5b, yield the urea, 'BuNH-C(0)-NHAr^, upon hydrolysis. 

Treatment of complex 2, (TTP)Hf=NAr''', with Ar'^'^CO produced a new adduct, 6, 

containing two inequivalent Ai'^ fragments. Diagnostic of the two different Ar'^ groups are 

the two unique isopropyl methine signals at 1.93 (m, 2H) and -0.07 ppm (m, 2H). Clearly, 

complex 6 must be an ;f-N,0-boimd ureato. An ;f-N,N-bound ureato ligand would have 

N'Bu NAr 

Ai—N, 
(5) 

M = Zr 4a 
Hf 6 
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equivalent Ai'^ fragments. Heating complex 6 does not result in conversion to a new 

isomer. This observation is consistent with all observed isomers of 4 and 5 having N,0-

bound ligands. 

The two Ax'^ groups of complex 6 exhibit different variable temperature behavior. 

The methyl groups of one Ar'^ unit give rise to a broad 12-proton signal at 0.33 ppm at 293 

K in toluene-d,. Upon cooling, this broad signal begins to decoalesce at 24S K and 

eventually sharpens into two new doublets (0.8S and -0.03 ppm) at 234 K as expected for 

diastereotopic isopropyl methyl moieties. On warming to 323 K, the methyl signals for this 

fragment sharpen into a single slightly broadened doublet (12H) at 0.31 ppm. The 

other fragment exhibits diastereotopic isopropyl methyl groups with doublets at 0.61 

and 0.44 ppm throughout the temperature range from 234 K to 323 K. These latter signals 

are assigned to the Ar'^ fragment which is proximal to the porphyrin ligand. The distal Ar'*' 

group is not sterically constrained by the porphyrin macrocycle and can rotate about the N-

Cip„ bond. The free energy of activation for this rotational process is 12 ± 0.3 kcal/mol. 

Synthesis and Isomerization of (TTP)Hf(i7^-NAr^C(=NTr)NTr). Reaction of 

complex 2 with a slight excess of 1,3-diisopropylcarbodiimide results in the formation of a 

new guanidino complex, 7a. The two N-isopropyl groups of 7a are inequivalent as indicated 

by NMR. The proton assignments for this complex were confirmed by HMBC 

experiments. For example, the methyl proton signal at 0.96 is coupled to an aromatic 

resonance at 142.3 ppm. Thus, the 0.96 ppm peak must be associated with an isopropyl 

fragment of the Ai"^ group. The methine protons of these fragments appear at 1.63 (spt, 

IH) and 0.13 (spt, IH) ppm. The upfield methine proton overlaps with one of the methyl 
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signals of the N-Tr group at 0.13 ppm, but was identified by COSY. The N-Tr groups 

remain inequivalent as the temperature is raised to 323 K. Complex 7a is clearly an 

unsymmetrical N,N-bound guanidino species. Over a period of approximately three weeks 

at 353 K in C^Dg, a new product, 7b, was formed with the concomitant loss of 7a. At 323 

K, the 'H NMR spectrum (toluene-d, solution) of 7b exhibits a broad peak at -0.17 ppm for 

the methyl groups of both proximal NTr moieties. The distal NAr'''^ displays its isopropyl 

resonances at 0.70 (d, 12H) and 1.62 (spt, 2H) ppm. Unambiguous assignments for proton 

resonances were derived from HMBC experiments. The proton peaks at 0.70 and 1.62 ppm 

are both coupled to an aromatic carbon signal at 137.2 ppm. These two proton resonances 

correspond to the isopropyl groups of the Ar'^ fragment. Consequently, complex 7b is 

formulated as the symmetric guanidino, (TTP)Hf(7^-NTrC(=Ar''^NTr). 

Reaction of complexes 1 and 2 with 'BuNCS and 'BuNCSe. Imido complexes 1 

and 2 undergo reactions with BuNCS and BuNCSe at a slower rate than the analogous 

reactions with BuNCO. This reflects the greater electrophilic nature of the carbon atom in 

BuNCO relative to BuNCS and BuNCSe. In the reaction with BuNCS, the loss of 1 

occurred over 21 hours. In the reaction of BuNCS with 2, the presence of the starting 

imido Hf complex was detected even after 191 hours. In both cases, a transient complex 

7a 7b 
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assigned as the [2+2] cycloaddition product was observable, but it decomposed 

simultaneously to the carbodiimide, 'Bu-N=C=NAr''̂  and sparingly soluble [(TTP)Zr(/i-S)]2. 

Formulation of the zirconium product as a //-sulfido bridged dimer was based on the 

similarity of its 'H NMR spectrum to that of the oxygen analogue [(TTP)Zr(//-0)]2. The 

transient metallacycles were assigned by the similarity of the 'H, NAr'^ and "Bu NMR 

chemical shifts to those of the oxygen containing analogues, 4a and Sa (Table 2). In the 

presence of excess 'BuNCSe, 1 and 2 are consumed without the observation of intermediates 

during the formation of carbodiimide, 'Bu-N=C=NAr''^. Once again, the loss of the 

zirconium imido (8 hrs) is faster than in the hafhium case (109 hrs). 

Table 2. Chemical shifts of the NAr'^ and Bu protons in the N,Ch-bound ureato derivatives. 

Reactant 'BuN=C=E CHA/ej, NAr''*' (ppm)' "Bu (ppm) 
from metallacycle complex 

(TTP)Zr=NAr'^(l) BuNCO 0.82 (d), 0.42 (d) (4a) 0.35 (s) 
(TTP)Hf^NAr'^ (2) BuNCO 0.84 (d), 0.43 (d) (5a) 0.34 (s) 
(TTP)Zr=NAr"^(l) "BuNCS 1.02 (d), 0.51 (d) 0.52 (s) 
(TTP)Hf=NAr^^ (2)  BuNCS 1.04 (d). 0.51 (d) 0.52 (s) 
'  CA.20X 

Structures of (TTP)Zr(;7'-NAi^C(=N*Bu)0), 4a, (TTP)Zr(;f-

N'BuC(=NAi^O), 4b, and (TTP)Hf(7^-NAr«^C(=NPH)NPrO, 7a. The ureato ligand is 

bound to the zirconium in both 4a (Fig. 3) and 4b (Fig. 4) through nitrogen and oxygen. 

Both complexes 4a and 4b possess a slightly puckered ureato metallacycle. This four-

membered ring is nearly perpendicular to the mean 24-atom porphyrin core, with dihedral 

angles between planes of 91.1 (4a) and 101.2 (4b). The ureato fragment is staggered with 

respect to the pyrrole nitrogens. Representative torsional angles are 30.3° (N2-Zr-N6-C49) 
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Figure 3. ORTEP representation of (TTP)Zr(ti'-NAr''^C(=N'Bu)0). Thermal ellipsoids drawn at 30% probability level. 
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Figure 4. ORTEP representation of (TTP)Zr(Ti^-N'BuC(=NAr''^0). Thermal ellipsoids drawn at 30% probability level. 
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and 34® (N4-Zr-0-C49) for 4a and 24.7° (N2-Zr-N5-C49) and 7.7° (N4-Zr-0-C49) for 4b. 

The displacement of the Zr from the four-nitrogen pyrrole plane, 0.8891 A (4a) and 0.9069 

A (4b), is comparable to related six-coordinate compounds (yide supra). For 4a, the 24-

atom porphyrin core exhibits a higher degree of rufiQing and doming in comparison to the 

imido complex 1. Unexpectedly, very little ruffling is observed in 4b. Instead, marked 

doming and an appreciable saddle deformation is seen in the deviations of the -pyrrole 

carbon atoms from the 24-atom porphyrin core [2 (C2), 3 (C3), -27 (C7), -26 (C8), 4 (C12), 

8 (CI3), -20 (CI7), -25 (CI8) pm]. The metallacycle fragments contain obtuse N-C-0 

angles 106.16(14) and 107.1(3), as well as acute N-Zr-0 angles 63.62(5) and 63.13(11), in 

4a and 4b respectively.^ In comparison to Zr-N amide bond lengths ranging from 2.027(7)-

2.159(3) A^' the Zr-N6 distance in 4a and the Zr-N5 bond length in 4b are somewhat 

elongated with distances of 2.1096(13) and 2.137(3), respectively (Table 2). These bond 

lengths are slightly shorter than those found for the N,N-bound ureato ligand in 

[Zr(tmtaa)(;f-NAr^C(=0)N'Bu)]; Zr-NTr (2.168(4) A) and Zr-NBu (2.155(4) A).' No 7t-

bonding between Zr-0 is suggested by the rather long bond lengths, 2.0677(12) A in 4a and 

2.066(3) A in 4b, and the acute C49-0-Zr angles of 96.76(10) in 4a and 96.7(2) in 4b.^^ 

Other intramolecular metallacycle distances are normal. 

The kinetic product from the treatment of complex 2 with 1,3-

diisopropylcarbodiimide yields the unsymmetric guanidino(2-) complex (TTP)Hf(;f-

NAr'^C(=NTr)N'Pr) 7a. The sUghtly puckered Hf(;r-NAr'^C(=N'Pr)N1>r) metallacyle (Fig. 

5) is perpendicular to the mean 24-atom porphyrin core, with a dihedral angle between 

planes of 89.9. The metallacycle is staggered in relation to the pyrrole nitrogens to a lesser 
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Figure 5. ORTEP representation of (TTP)Hf(ii^-NAi'*'C(=N'Pr)N'Pr). Thermal ellipsoids drawn at 30% probability level. 
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degree than that of the ureato complexes. The torsional angles are 15.9 (Nl-Hf-N5-C49) 

and 5.4° (N3-Hf-N6-C49). The Hf-NTr distance (2.087(6) A) is within known Hf amido 

bond distances (2.03-2.12 A).'^ However, the notably longer Hf-NAr'*^ distance (2.151(2) 

A) may be due to the steric bulk of the Ar*^ group. Consequently, there is an irregularity in 

the Hf-Npy^ distances: Hf-Nl, 2.251(2); Hf-N2, 2.184(2); Hf-N3, 2.238(2); and Hf-N4, 

2.207(2) A. The two longer distances correspond to the nearly eclipsed nitrogens. 

Intrametallacycle C-N single and double bond distances are typical and are summarized in 

Table 3. As in complexes 4a and 4b, the porphyrin macrocycle of 7a shows ruffling and 

Table 3. Selected intramolecular metallacycle bond (A) distances and angles (°) of 4a, 
4b, and 7a. 

Complex Zr-0 N^i^-C(49) Ni„i«=C(49) 0-C(49) 
4a 2.0677(12) 2.1096(13) 1.401(2) 1.269(2) 1.349(5) 
4b 2.066(3) 2.137(3) 1.387(5) 1.277(5) 1.3530(19) 
7a 2.087(2) Hf-N(6) 1.391(3) N(6)-C(49) 1.282(4) 

2.151(2) Hf-N(5) 1.428(3) N(5)-C(49) 

Complex 0-Zr-N N-Hf-N E-C(49)-N^... 
4a 63.62(5) 106.16(14) E = 0 
4b 63.13(11) 107.1(3) E = 0 
7a 63.21(8) 104.0(2) E = N 

doming distortions. However, a somewhat more pronounced saddle deformation is 

observed, possibly due to the more sterically demanding metallacycle. As expected, the 

hexa-coordinate hafiiium center is further out of the N4-pyrrole plane (0.9111 A) compared 

to the five-coordinate imido complex 2 (out-of-plane distance of0.7092 A). The 
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coordination environments most closely resemble a distorted trigonal prism with the metal 

ion displaced towards one of the rectangular faces.^^ 

Discussion 

In continuing our work with titanium amido and imido chemistry, we have expanded 

our efiforts to zirconium and hafnium. For hexacoordinate complexes, the large displacement 

of Zr and Hf from the porphyrin plane confines the two ligands to a m-geometry. This 

places further restrictions on the sizes of the two mutually cis ligands. Thus, it is possible to 

prepare c/s-(TTP)M(NHC5H4-p-CH3)2 (M = Zr, Hf) by simple metathesis reactions of cis-

(TTP)MCl2 with LiNHAr. However, when o-substituents are present on the amide reagent, 

formation of a bis(amido) complex is not observed. Instead, a terminal imido complex is 

produced. Presumably, o-substituted aryl amides are too bulky to form a c/5-bis(amido) 

species. Moreover, the kinetic stability of the final terminal imido complexes is also a 

function of the size of the o-substituent. Varying the amide aryl group in the reaction of 

LiNHR (R = 2,4,6-Me3C6H2, 2,4,6-'BuC6H2 or 2,4,6-Ph3C6H2) with (TTP)MCl2 led to 

thermally unstable imido complexes as observed by ^H NMR. In these cases, analytically 

pure samples could not be isolated.'* The 2,4,6-triphenyl derivative, (TTP)Hf=NCfiH2Ph3, 

was isolated as poorly diffracting crystals. A low resolution molecular structure confirms 

the presence of an imido ligand, but the complex was thermally unstable in solution and in 

the solid state.'^ The steric constraints in the related tetraazaanulene complexes are less 

demanding. Thus, the formation of a secondary bis(amido), Zr(tmtaa)(HNAr'^2' is possible. 
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Examples of isolated N,N-bound ureato complexes formed from imido complexes 

have been thoroughly studied.^ In addition, the similar N,0-bound carbamates are well 

known reaction products from [2+2] cycloaddition of isocyantes to oxo species.^ To the 

best of our knowledge, there are no examples in the literature of an isolated transition metal 

N,0-bound ureato(2-).^ This is somewhat of an anomaly since early transition metal M-O 

bonds are generally stronger than M-N bonds." Nonetheless, the importance of N,0-bound 

forms has been implicated in the catalytic condensation of phenyl isocyanate to N,N-

diphenylcarbodiimide via a proposed vanadium N,0-bound ureato intermediate.'* There are 

two interesting examples that illustrate the reactivity of zirconium imido complexes with 

'BuNCO. The first case involves the implication of a N,0-bound ureato(2-) as an 

intermediate in the reaction of Cp2Zr(N'Bu) with Bu-NCO. The final products are 1,3-di-^-

butylcarbodiimide and (Cp2ZrO)„.^ In the second example, treatment of the tetraazaanulene 

derivative, (tmtaa)Zp=NAr''^, with Bu-NCO yields the N,N-bound ureato.® The latter 

demonstrates the smaller steric demands of the tetraazaannulene ligand in comparison to 

those of the porphyrin ureato complexes 4a and Sa. Mean bond dissociation enthalpy data 

collected for amido MCNRj)* (M = Zr, Hf; R = Me, Et) compounds indicate 

that Hf-NRj bonds are generally stronger than Zr bonds by = 5%.'' We propose that the 

stronger bonds of Hf explain the distinct conditions under which isomerization and 

decomposition of the ureato complexes 4a and Sa occur. 

Specifically, higher temperatures are required for the isomerization of hafiiium 

complex 5a (80°C) versus the zirconium analogue 4a (25°C). Similarly, the ejection of 

carbodiimide occurs for 4a at 80°C but does not for Sa at 110°C. 
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The anomalous preference of the N,0-binding motif of complexes 4b and Sb is 

presumably a manifestation of steric factors. The N,N-form is likely to have unfavorable 

steric interactions between the bulky Ar^ group and the porphyrin. The known N,N-bound 

ureato complexes, where steric factors appear not to be as critical, may be dictated by the 

resultant stronger C=0 bond versus the weaker C=N bond required in a N,0-bound 

ureato.^ Kinetic products with the bulky NAi'^ group proximal to the porphyrin are 

converted to thermodynamic complexes with the smaller proximal "BuN group. This steric 

influence also appears to occur in the isomerization of the guanidino complex 7a. These 

isomerizations are readily deteaed by 'H NMR spectroscopy since the substituents of the 

metallacycle are strongly affected by the porphyrin ring current as a function of proximity. 

Under identical reaction conditions, the consumption of imido complexes 1 and 2 by 

BuNCO was found to be complete within minutes for Zr but required « 90 minutes for Hf 

This difference may be attributed to the slightly more confined coordination sphere due to a 

smaller out-of-plane distance in 2 relative to the Zr imido analogue. Parallel behavior is seen 

in the reactions of imido complexes 1 and 2 with BuNCS and BuNCSe. For the [2+2] 

metallacycle products from reaction of complexes 1 or 2 with 'BuNC=Ch, the hafhium 

complexes were found to be more stable towards elimination of carbodiunide. The loss of 

carbodiimide from 4a involves the cleavage of M-N and C-0 o-bonds and the formation of a 

metal-oxygen o-bond and a carbon-nitrogen 7C-bond. Since the C-O cleavage and C=N 

formation processes are equivalent for both Zr and Hf, the difference in reactivity lies in the 

M-N and M=0 bonds. Since Hf forms stronger o-bonds than Zr,*' 5a does not eject 
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carbodiimide. The weaker C-S and C-Se bonds in QuNCS and 'BuNCSe are manifested in 

progressively more reactive N,Ch-bound metallacycles with respect to loss of carbodiimide. 

In the reaction of 1 and 2 with BuNCS and "BuNCSe the simultaneous presence of 

Ar'^=C=N'Bu and the imido complexes does not lead to a guanidino derivative, 

presumably due to the steric bulk of the carbodiimide. In the presence of the less sterically 

demanding 'PrN=C=Nl*r, a kinetic [2+2] condensation product, (TTP)Hf(;f-

NAr'^C(=N'Pr)N'Pr) 7a, is formed."*^ As seen with the isocyanate [2+2] analogues, an 

isomerization slowly occurs which leads to a thermodynamic isomer with the bulky NAr'^ 

moiety at the 3 position of the metallacycle. 

The variable temperature NMR spectra of the guanidino complex 7b in toluene-^g 

reveal the dynamic aspects involving the imine nitrogen. At 223 K, two doublets for the 

diastereotopic isopropyl methyl groups are observed for NAr'^ at 0.79 and 0.73 ppm. In 

addition, a doublet is observed for the methyl groups of each NTr unit at 0.60 (d, 6H) and 

-0.82 (d, 6H) ppm. The fact that a single doublet is present for the methyl protons of each 

NTr group indicates that the HfNCN four-membered metallacyclic ring must, on the NMR 

time scale, have a time-averaged mirror plane of symmetry which bisects the NTr groups. 

Warming the sample to 243 K results in coalescence of the NAi''^ isopropyl groups (G* = 

11.8 ± 0.3 kcal/mol). This resonance subsequently sharpens to a single doublet at 

temperatures above 253 K. At 283 K, the NTr methyl signals have coalesced (G^ = 12.1 ± 

0.3 kcal/mol) and reappear as a sharp doublet (-0.17 ppm) at 363 K. These two coalescence 

phenomena have equivalent activation barriers and are consistent with an inversion process 

at the imine nitrogen. The transition state for this process has C2V symmetry which results in 
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equivalent Nl'r. groups and NAr'^ isopropyl groups which are no longer diastereotopic on 

the NMR time scale. Although rotation about the Cjp„-Nj^ bond could also rationalize the 

coalescence behavior of the NAr'^ isopropyl resonances, it is likely to be a higher energy 

process than inversion at the imine nitrogen. The observation of two coalescence 

temperatures for complex 7b is presumably a result of a larger frequency difference for the 

Ni^r resonances at the low-temperature limit relative to that for the NAr'^ isopropyl signals. 

In a similar manner, the ;7^-N,0-ureato complex 6 also exhibits dynamic 'H NMR 

features. However, only one of the NAr'^ groups exhibits fluxional behavior. Since the 

NAr*^ fragments proximal to the porphyrin in complexes 4a and Sa exhibit no fluxionality, 

the distal NAr'^ group in complex 6 must be involved in the dynamic process. Moreover, 

the only motion that would collapse the diastereotopic Tr methyl signals into a single 

resonance is rotation about the bond. The absence of an observable syn-anti 

isomerization for complex 6 suggests two possibilities; 1) rapid inversion which is not 

restricted at the lowest temperature observed (223 K) or 2) existence of only one isomer. 

However, syn-anti inversion barriers of imine units are relatively high, typically on the order 

of 10-20 kcal/mol.^^ Also, it is unlikely that the imine inversion barrier in complex 7 is 

significantly lower than normal. Consequently, the imine fragment in complex 6 must exist 

in one geometric form. This is not unreasonable as the two large Ar*^ substituents should 

prefer to occupy mutually anti sites. 



www.manaraa.com

127 

syn- anti-

Conclusion 

In summary we have found the rigid basil plane formed by the porphyrin results in 

novel zirconium and hafhium imido reaction products in comparison to known L„M=NR (M 

= Zr, H£) complexes with other supporting ligand systems. Kinetic products from the 

reaction of RNCO and 'PrN=C=NTr with imido complexes 1 and 2 are formed with the 

NAr'^ moiety remaining bonded to the metal and the heterocumulene derived nitrene in the 

distal (3-position) of the metallacycle. Distinct isomerization conditions found for 4a and Sa 

illustrate the steric interactions of the porphyrin macrocycle with substituents in the a 

position of the metallacycle ligand as well as bonding characteristics between Zr-N and 

Hf-N. Steric factors appear to be manifested in the conversion of the kinetic isomers to the 

thermodynamic complexes. Difference in bond strengths between the M-N.^ bond (M = 

Zr, Hf) are exhibited in the requirement of more forcing conditions for isomerization of Sa 

relative to 4a. 

The imido complexes also exhibit reactivity with a variety of other heterocumulenes, 

aldehydes, and ketones. The chemistry of an interesting pinacolone coupling product, 

(TTP)Zr(i7^-0C('Bu)(Me)CH=C('Bu)0), is currently under investigation.^ 
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APPENDIX A 

Table I. Crystal data, data coliectiun, and solution and refinement for complex 1, 
(TTP)Zr=NAr^^ 

Empirical formula 
Crystal habit, color 
Crystal size 
Crystal system 
Space group 

Volume 
Z 
Formula weight 
Density (calculated) 
Absorption coefficient 
F(OOO) 
DifB'actometer 
Wavelength 
Temperature 
6 range for data collection 
Index ranges 
Reflections collected 
Independent reflection 
System used 
Solution 
Refinement method 
Weighting scheme 

Absorption correction 
Max. and min. transmission 
Data / restraints / parameters 
R indices (I > 2o(I) = 7872) 
R indices (all data) 
Goodness-of-fit on 
Largest diff. peak and hole 

a = 90° 
p = 103.970(1)° 
7 = 90° 

C70.5oH69N5Zr 

Block, Purple 
0.28 X 0.26 X 0.22 mm 
Monoclinic 
P2,/n 
a = 16.6358(2) A 
6= 18.7583(1) A 
c = 19.4375(2) A 
5886.24(10) A^ 
4 
1077.53 
1.216 Mg/m^ 
0.233 mm"' 
2268 
Siemens SMART Platform CCD 
0.71073 A 
172(2) K 
1.45 to 25.00° 
-19 < A < 19, 0 < /t < 22, 0 < (! < 23 
29098 
10237 (Ri„, = 0.0313) 
SHELXTL-V5.0 
Direct methods 
Full-matrix least-squares on F^ 
W = [o2(F„2) + (APf + (BP)]-', where P = 
(F,- + 2FC2))/3, A = 0.0610, and B = 1.8549p] 
SADABS (Sheldrick, 1996) 
1.000 and 0.774 
10232 / 0 / 694 
R1 = 0.0403, wR2 = 0.0984 
R1 = 0.0620, wR2 = 0.1093 
0.977 
0.305 and -0.509 eA"^ 
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Table n. Atomic coordinates and equivalent isotropic displacement parameters for 
(TTP)Zr=NAr'''. U(eq) is defined as one third of the trace of the or^ogonalized Ug tensor. 

Atom X y z U(eq) 

Zr(l) -0.088226(14) 0.850698(12) 0.366714(12) 0.02126(8) 

N(I) -0.05427(12) 0.89076(10) 0.27073(10) 0.0248(5) 

N(2) -0.21346(12) 0.88735(10) 0.31222(10) 0.0253(5) 

N(3) -0.12386(12) 0.89068(10) 0.46278(10) 0.0238(4) 

N(4) 0.03461(12) 0.89471(10) 0.42093(10) 0.0241(5) 

C(l) 0.0249(2) 0.90287(13) 0.26186(13) 0.0275(6) 

C(2) 0.0209(2) 0.90520(15) 0.18713(14) 0.0357(6) 

C(3) -0.0590(2) 0.89473(14) 0.15167(14) 0.0345(6) 

C(4) -0.1069(2) 0.88683(13) 0.20378(13) 0.0264(6) 

C(5) -0.1937(2) 0.87927(13) 0.18944(13) 0.0272(6) 

C(6) -0.24299(15) 0.88094(13) 0.23957(13) 0.0252(5) 

C(7) -0.3318(2) 0.87456(14) 0.22401(14) 0.0311(6) 

C(8) -0.3549(2) 0.87672(14) 0.28604(13) 0.0306(6) 

C(9) -0.28105(15) 0.88459(13) 0.34209(13) 0.0263(6) 

C(10) -0.27707(15) 0.88695(13) 0.41546(13) 0.0272(6) 

C(ll) -0.20454(15) 0.89168(12) 0.47124(13) 0.0257(5) 

C(12) -0.2018(2) 0.89672(13) 0.54540(13) 0.0302(6) 

C(13) -0.1205(2) 0.89614(13) 0.58156(13) 0.0296(6) 

C(14) -0.0714(2) 0.89337(12) 0.53007(13) 0.0261(6) 

C(15) 0.01589(15) 0.89382(12) 0.54483(13) 0.0253(5) 

C(16) 0.06418(15) 0.89928(12) 0.49382(13) 0.0255(5) 

C(17) 0.15097(15) 0.91619(13) 0.50962(14) 0.0296(6) 

C(18) 0.17299(15) 0.92237(13) 0.44717(13) 0.0292(6) 

C(19) 0.10076(14) 0.90870(12) 0.39072(13) 0.0250(5) 

C(20) 0.09688(15) 0.91151(12) 0.31760(13) 0.0264(5) 

C(21) -0.23799(15) 0.86779(14) 0.11293(13) 0.0289(6) 

C(22) -0.2362(2) 0.8011(2) 0.0829(2) 0.0488(8) 

C(23) -0.2784(2) 0.7880(2) 0.0128(2) 0.0530(8) 

C(24) -0.3223(2) 0.8405(2) -0.02917(15) 0.0445(8) 

C(25) -0.3231(2) 0.9078(2) 0.0010(2) 0.0539(9) 

SOF 
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Atom X y z U(eq) 

C(26) -0.2818(2) 0.9211(2) 0.07111(15) 0.0422(7) 

C(27) -0.3700(2) 0.8262(2) -0.1046(2) 0.0727(12) 

C(28) -0.3576(2) 0.88031(15) 0.43707(14) 0.0325(6) 

C(29) -0.3737(2) 0.8201(2) 0.4738(2) 0.0458(7) 

C(30) -0.4487(2) 0.8126(2) 0.4930(2) 0.0569(9) 

C(31) -0.5095(2) 0.8641(2) 0.4761(2) 0.0549(9) 

C(32) -0.4938(2) 0.9237(2) 0.4402(2) 0.0578(9) 

C(33) -0.4184(2) 0.9325(2) 0.4212(2) 0.0451(7) 

C(34) -0.5926(2) 0.8545(3) 0.4952(2) 0.0868(14) 

C(35) 0.06324(15) 0.88746(13) 0.62060(13) 0.0258(6) 

C(36) 0.1149(2) 0.82850(14) 0.64228(14) 0.0319(6) 

C(37) 0.1575(2) 0.82102(15) 0.71253(15) 0.0369(7) 

C(38) 0.1517(2) 0.8712(2) 0.76362(14) 0.0362(7) 

C(39) 0.1012(2) 0.93047(15) 0.74168(14) 0.0380(7) 

C(40) 0.0577(2) 0.93848(13) 0.67145(13) 0.0323(6) 

C(41) 0.1990(2) 0.8624(2) 0.8404(2) 0.0532(9) 

C(42) 0.1765(2) 0.92737(13) 0.29691(13) 0.0290(6) 

C(43) 0.2416(2) 0.8790(2) 0.3115(2) 0.0390(7) 

C(44) 0.3159(2) 0.8938(2) 0.2931(2) 0.0443(7) 

C(45) 0.3264(2) 0.9566(2) 0.2588(2) 0.0453(7) 

C(46) 0.2613(2) 1.0052(2) 0.2451(2) 0.0496(8) 

C(48) 0.4069(2) 0.9721(2) 0.2372(2) 0.0696(11) 

N(5) -0.08884(12) 0.75144(10) 0.36319(10) 0.0262(5) 

C(49) -0.08283(14) 0.67806(13) 0.36953(13) 0.0252(5) 

C(50) -0.0901(2) 0.63417(13) 0.30838(14) 0.0293(6) 

C(51) -0.0809(2) 0.56045(14) 0.31730(15) 0.0365(7) 

C(52) -0.0649(2) 0.52955(15) 0.3840(2) 0.0428(7) 

C(53) -0.0597(2) 0.57214(14) 0.4434(2) 0.0382(7) 

C(54) -0.0689(2) 0.64579(13) 0.43763(14) 0.0297(6) 

C(55) -0.1070(2) 0.66805(14) 0.23524(13) 0.0324(6) 

SOF 
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C(56) -0.1509(2) 0.6181(2) 0.1755(2) 0.0453(7) 1 

C(57) -0.0267(2) 0.6976(2) 0.2203(2) 0.0457(7) 1 

C(58) -0.0670(2) 0.69282(14) 0.50188(14) 0.0346(6) 1 

C(59) -0.1548(2) 0.7095(2) 0.5064(2) 0.0485(8) 1 

C(60) -0.0158(2) 0.6631(2) 0.5713(2) 0.0494(8) 1 

C(61) 0.3054(3) 0.7086(2) 0.2490(2) 0.0733(11) 1 

C(62) 0.3698(3) 0.7264(2) 0.2179(2) 0.0839(13) 1 

C(63) 0.4493(3) 0.7250(3) 0.2557(3) 0.0925(14) 1 

C(64) 0.4690(3) 0.7076(3) 0.3248(3) 0.109(2) 1 
C(65) 0.4097(3) 0.6899(3) 0.3579(3) 0.099(2) 1 

C(66) 0.3281(3) 0.6897(2) 0.3218(2) 0.0789(12) 1 

C(67) 0.2158(3) 0.7093(3) 0.2073(3) 0.123(2) 1 
C(68) -0.0353(3) 1.0273(2) -0.0005(2) 0.0865(13) 1 

C(69) -0.1193(3) 1.0033(3) -0.0436(2) 0.0927(14) I 

C(70) -0.1879(4) 1.0582(3) -0.0478(3) 0.116(2) 0.50 

C(70') -0.1879(4) 1.0582(3) -0.0478(3) 0.116(2) 0.50 

C(7r) -0.1845(7) 1.1249(5) -0.0867(6) 0.108(3) 0.50 
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Table m. Bond lengths [A] and angles [°] for (TTP)Zr=NAr'^ 

Zrl-N5 1.863(2) C28-C29 1.395(4) 

Zrl-N2 2.207(2) C29-C30 1.395(4) 

Zrl-Nl 2.208(2) C30-C31 1.379(5) 

Zrl-N4 2.220(2) C31-C32 1.377(5) 

Zrl-N3 2.221(2) C31-C34 1.526(4) 

N1-C4 1.384(3) C32-C33 1.399(4) 

Nl-Cl 1.388(3) C35-C40 1.395(3) 

N2-C6 1.384(3) C35-C36 1.401(4) 

N2-C9 1.385(3) C36-C37 1.386(4) 

N3-C14 1.387(3) C37-C38 1.388(4) 

N3-C11 1.391(3) C38-C39 1.398(4) 

N4-C16 1.386(3) C38-C41 1.518(4) 

N4-C19 1.392(3) C39-C40 1.390(4) 

C1-C20 1.416(3) C42-C43 1.388(4) 

C1-C2 1.439(3) C42-C47 1.390(4) 

C2-C3 1.356(4) C43-C44 1.396(4) 
C3-C4 1.440(3) C44-C45 1.386(4) 

C4-C5 1.411(3) C45-C46 1.392(4) 

C5-C6 1.417(3) C45-C48 1.524(4) 

C5-C21 1.507(3) C46-C47 1.390(4) 

C6-C7 1.439(3) N5-C49 1.383(3) 

C7-C8 1.352(3) C49-C54 1.423(3) 

C8-C9 1.439(3) C49-C50 1.427(3) 

C9-C10 1.412(3) C50-C51 1.397(3) 

ClO-Cll 1.417(3) C50-C55 1.520(4) 

C10-C28 1.502(3) C51-C52 1.386(4) 

C11-C12 1.434(3) C52-C53 1.388(4) 

C12-C13 1.365(4) C53-C54 1.391(4) 

C13-C14 1.437(3) C54-C58 1.523(4) 

C14-C15 1.411(3) C55-C56 1.533(4) 

C15-C16 1.422(3) C55-C57 1.537(4) 

C15-C35 1.498(3) C58-C60 1.517(4) 



www.manaraa.com

137 

Table m. (continued) 

C16-C17 

C17-C18 

C18-C19 

C19-C20 

C20-C42 

C21-C26 

C21-C22 

C22-C23 

C23-C24 

C24-C25 

C24-C27 

C25-C26 

C28-C33 

1.437(3) 

1.355(3) 

1.441(3) 

1.408(3) 

1.504(3) 

1.380(4) 
1.384(4) 
1.397(4) 

1.372(4) 

1.392(4) 
1.514(4) 

1.393(4) 

1.388(4) 

C58-C59 

C61-C62 

C61-C66 

C61-C67 

C62-C63 

C63-C64 

C64-C65 

C65-C66 

C68-C69 

C68-C68-#l 

C69-C70' 

C69-C70 

C70'-C71' 

N5-Zrl-N2 

N5-Zrl-Nl 

N2-Zrl-Nl 

N5-Zrl-N4 

N2-Zrl-N4 

Nl-Zrl-N4 

N5-Zrl-N3 

N2-Zrl-N3 

Nl-Zrl-N3 

N4-Zrl-N3 

C4-N1-C1 

C4-Nl-Zrl 

Cl-Nl-Zrl 

C6-N2-C9 

C6-N2-Zrl 

C9-N2-Zrl 

C14-N3-C11 

107.31(8) 

108.02(8) 

83.85(7) 

112.67(8) 

140.01(7) 

83.14(7) 

111.60(8) 

83.44(7) 

140.36(7) 

82.95(7) 

107.2(2) 
122.94(15) 

127.2(2) 

107.5(2) 

121.6(2) 

123.7(2) 

107.0(2) 

C21-C22-C23 

C24-C23-C22 

C23-C24-C25 

C23-C24-C27 

C25-C24-C27 

C24-C25-C26 

C21-C26-C25 

C33-C28-C29 

C33-C28-C10 

C29-C28-C10 

C28-C29-C30 

C31-C30-C29 

C32-C31-C30 

C32-C31-C34 

C30-C31-C34 

C31-C32-C33 

C28-C33-C32 

1.518(4) 

1.392(6) 

1.418(6) 

1.515(6) 

1.349(6) 

1.344(7) 

1.344(6) 
1.370(6) 

1.514(6) 

1.553(8) 

1.525(6) 

1.525(6) 

1.470(10) 

120.9(3) 

121.6(3) 

117.3(3) 

121.8(3) 

120.9(3) 

121.5(3) 

120.8(3) 

117.7(2) 

122.1(2) 

120.3(2) 
120.9(3) 

121.1(3) 

118.2(3) 

120.9(3) 

121.0(3) 

121.4(3) 

120.7(3) 
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Table m. (continued) 

C14-N3-Zrl 124.8(2) C40-C35-C36 118.0(2) 

Cll-N3-Zrl 124.4(2) C40-C35-C15 122.2(2) 

C16-N4-C19 107.3(2) C36-C35-C15 119.8(2) 

C16-N4-Zrl 124.6(2) C37-C36-C35 120.5(3) 

C19-N4-Zrl 126.9(2) C36-C37-C38 121.9(3) 

N1-C1-C20 125.2(2) C37-C38-C39 117.5(2) 

N1-C1-C2 108.4(2) C37-C38-C41 121.3(3) 

C20-C1-C2 126.4(2) C39-C38-C41 121.2(3) 

C3-C2-C1 108.1(2) C40-C39-C38 121.2(3) 

C2-C3-C4 107.4(2) C39-C4CK:35 120.9(2) 

N1-C4-C5 125.2(2) C43-C42-C47 118.3(2) 

N1-C4-C3 108.9(2) C43-C42-C20 120.6(2) 

C5-C4-C3 125.9(2) C47-C42-C20 121.0(2) 

C4-C5-C6 126.6(2) C42-C43-C44 120.9(3) 

C4-C5-C21 116.3(2) C45-C44-C43 121.0(3) 

C6-C5-C21 117.1(2) C44-C45-C46 117.8(3) 

N2-C6-C5 125.6(2) C44-C45-C48 121.1(3) 

N2-C6-C7 108.4(2) C46-C45-C48 121.1(3) 

C5-C6-C7 126.0(2) C47-C46-C45 121.6(3) 

C8-C7-C6 108.0(2) C46-C47-C42 120.4(3) 

C7-C8-C9 107.7(2) C49-N5-Zrl 172.5(2) 

N2-C9-C10 125.2(2) N5-C49-C54 119.9(2) 

N2-C9-C8 108.5(2) N5-C49-C50 120.7(2) 

C1&-C9-C8 126.2(2) C54-C49-C50 119.4(2) 

C9-C10-C11 126.7(2) C51-C50-C49 118.9(2) 

C9-C10-C28 116.9(2) C51-C50-C55 121.3(2) 

C11-C10-C28 116.3(2) C49-C50-C55 119.8(2) 

N3-C11-C10 125.2(2) C52-C51-C50 121.3(2) 

N3-C11-C12 108.8(2) C51-C52-C53 119.7(3) 

C10-C11-C12 126.0(2) C52-C53-C54 121.4(3) 

C13-C12-C11 107.7(2) C53-C54-C49 119.1(2) 
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Table m. (continued) 

C12-C13-C14 107.5(2) 

N3-C14-C15 125.0(2) 

N3-€14-C13 108.9(2) 

C15-C14-C13 126.0(2) 

C14-C15-C16 125.8(2) 

C14-C15-C35 118.1(2) 

C16-C15-C35 116.1(2) 

N4-C16-C15 126.0(2) 

N4-C16-C17 108.8(2) 

C15-C16-C17 125.1(2) 

C18-C17-C16 107.6(2) 

C17-C18-C19 108.1(2) 

N4-C19C20 125.8(2) 

N4-C19-C18 108.1(2) 

C20-C19-C18 126.0(2) 

C19-C20-C1 126.3(2) 

C19-C20-C42 116.7(2) 

C1-C20-C42 117.0(2) 

C26-C21-C22 117.9(3) 

C26-C21-C5 122.7(2) 

C22-C21-C5 119.3(2) 

C53-C54-C58 122.0(2) 

C49-C54-C58 118.9(2) 

C50-C55-C56 113.6(2) 

C50-C55-C57 110.8(2) 

C56-C55-C57 110.7(2) 

C60-C58-C59 111.5(2) 

C60-C58-C54 114.4(2) 

C59-C58-C54 109.7(2) 

C62-C61-C66 116.5(4) 

C62-C61-C67 121.7(5) 

C66-C61-C67 121.8(4) 

C63-C62-C61 121.0(4) 

C64-C63-C62 121.2(5) 

C63-C64-C65 120.7(5) 

C64-C65-C66 120.4(5) 

C65-C66-C61 120.2(4) 

C69-C68-C68 #1 114.0(5) 

C68-C69-C70' 114.1(4) 

C68-C69-C70 114.1(4) 

C71'-C70'-C69 118.7(5) 
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Table IV. Crystal data, data collection, and solution and refinement for complex 2, 
(TTP)Hf=NAr''^ 

Crystal Data 
Empirical formula 
Crystal habit, color 
Crystal size 
Crystal system 
Space group 

Volume 
Z 
Formula weight 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Diflfractometer 
Wavelength 
Temperature 
6 range for data collection 
Index ranges 
Reflections collected 
Independent reflection 
System used 
Solution 
Refinement method 
Weighting scheme 

Absorption correction 
Max. and min. transmission 
Data / restraints / parameters 
R indices (I > 2o(I) = 7872) 
R indices (all data) 
Goodness-of-fit on 
Largest diff. peak and hole 

a = 90® 
p = 104.029(1)° 
y = 90° 

^70.50^69^^5 
Block, Purple 
0.28x0.24x0.12 mm 
Monoclinic 
P2,/n 
a = 16.6081(2) A 
b = 18.6360(3) A 
c= 19.3910(1) A 
5822.67(12) A^ 
4 
1164.80 
1.329 Mg/m^ 
1.838 mm"' 
2396 
Siemens SMART Platform CCD 
0.71073 A 
173(2)K 
1.45 to 25.06° 
-19 < A < 19, 0 < ^ < 22, 0 < « < 23 
32323 
10215 (Ri« = 0.0270) 
SHELXTL-V5.0 
Direct methods 
Full-matrix least-squares on F^ 
W = [O2(F„2) + (AP)2 + (BP)]-\ where P = 
(Fo- + 2Fc-))/3, A = 0.0208, and B = 6.0854 
SADABS (Sheldrick, 1996) 
1.000 and 0.860 
10215/0/694 
R1 = 0.0263, wR2 = 0.0573 
R1 = 0.0343, wR2 = 0.0602 
1.055 
0.444 and -1.079 eA"^ 
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Table V. Atomic coordinates and equivalent isotropic displacement parameters for 
(TTP)Itf=NAr'^. U(eq) is defined as one third of the trace of the orthogonalized Uy tensor. 

Atom X V z Ufeq) SOF 
Hf(l) -0.087843(7) 0.852927(6) 0.366437(6) 0.01930(4) 1 

N(l) -0.05394(14) 0.89105(12) 0.27095(12) 0.0225(5) 1 

N(2) -0.21251(14) 0.88714(12) 0.31219(12) 0.0220(5) 1 

N(3) -0.12337(14) 0.89067(12) 0.46204(12) 0.0223(5) 1 

N(4) 0.03442(14) 0.89506(12) 0.42062(12) 0.0219(5) 1 

C(l) 0.0252(2) 0.9030(2) 0.2622(2) 0.0255(6) 1 

C(2) 0.0209(2) 0.9055(2) 0.1872(2) 0.0324(7) 1 

C(3) -0.0589(2) 0.8953(2) 0.1522(2) 0.0317(7) 1 

C(4) -0.1068(2) 0.8870(2) 0.20389(15) 0.0254(6) 1 

C(5) -0.1935(2) 0.8796(2) 0.18916(15) 0.0254(6) 1 

C(6) -0.2423(2) 0.88091(15) 0.23918(15) 0.0234(6) 1 

C(7) -0.3309(2) 0.8750(2) 0.2235(2) 0.0285(7) 1 

C(8) -0.3544(2) 0.8767(2) 0.2856(2) 0.0293(7) 1 

C(9) -0.2801(2) 0.88477(15) 0.3420(2) 0.0237(6) 1 

C(10) -0.2768(2) 0.8870(2) 0.4152(2) 0.0253(6) 1 

C(ll) -0.2040(2) 0.8919(2) 0.4706(2) 0.0244(6) 1 

C(12) -0.2011(2) 0.8966(2) 0.5448(2) 0.0281(7) 1 
C(13) -0.1204(2) 0.8962(2) 0.5806(2) 0.0268(7) 1 

C(14) -0.0710(2) 0.89306(14) 0.52940(15) 0.0226(6) 1 

C(15) 0.0166(2) 0.89329(14) 0.54436(15) 0.0240(6) 1 
C(16) 0.0642(2) 0.89888(14) 0.49349(15) 0.0231(6) 1 
C(17) 0.1513(2) 0.9152(2) 0.5093(2) 0.0278(7) 1 

C(18) 0.1734(2) 0.9218(2) 0.4470(2) 0.0273(7) 1 
C(19) 0.1004(2) 0.90850(15) 0.39064(15) 0.0233(6) 1 
C(20) 0.0969(2) 0.91180(15) 0.3176(2) 0.0243(6) 1 

C(21) -0.2378(2) 0.8682(2) 0.11271(15) 0.0275(7) 1 
C(22) -0.2348(2) 0.8019(2) 0.0820(2) 0.0449(9) 1 
C(23) -0.2764(2) 0.7890(2) 0.0120(2) 0.0514(10) 1 

C(24) -0.3220(2) 0.8416(2) -0.0294(2) 0.0431(9) 1 
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Table V. (continued) 

Atom X V z Ufea^ SOF 

C(25) -0.3241(2) 0.9083(2) 0.0013(2) 0.0493(10) 1 

C(26) -0.2828(2) 0.9223(2) 0.0715(2) 0.0402(8) 1 

C(27) -0.3696(2) 0.8273(3) -0.1046(2) 0.0710(14) 1 

C(28) -0.3567(2) 0.8806(2) 0.4367(2) 0.0300(7) 1 

C(29) -0.3727(2) 0.8203(2) 0.4737(2) 0.0425(8) 1 

C(30) -0.4478(2) 0.8131(2) 0.4926(2) 0.0518(10) 1 

C(31) -0.5084(2) 0.8648(3) 0.4755(2) 0.0519(11) 1 

C(32) -0.4924(2) 0.9245(2) 0.4397(2) 0.0509(10) 1 

C(33) -0.4178(2) 0.9330(2) 0.4204(2) 0.0421(8) 1 

C(34) -0.5913(2) 0.8553(3) 0.4949(2) 0.081(2) 1 

C(35) 0.0636(2) 0.8870(2) 0.62033(15) 0.0252(6) 1 

C(36) 0.1159(2) 0.8281(2) 0.6417(2) 0.0288(7) 1 

C(37) 0.1588(2) 0.8202(2) 0.7118(2) 0.0339(7) 1 

C(38) 0.1528(2) 0.8705(2) 0.7630(2) 0.0329(7) 1 

C(39) 0.1017(2) 0.9296(2) 0.7415(2) 0.0352(7) 1 

C(40) 0.0578(2) 0.9379(2) 0.6713(2) 0.0292(7) 1 

C(41) 0.2001(2) 0.8615(2) 0.8399(2) 0.0497(10) 1 

C(42) 0.1766(2) 0.9273(2) 0.2970(2) 0.0264(6) 1 

C(43) 0.2417(2) 0.8789(2) 0.3113(2) 0.0353(7) 1 
C(44) 0.3157(2) 0.8934(2) 0.2928(2) 0.0399(8) 1 
C(45) 0.3265(2) 0.9563(2) 0.2589(2) 0.0422(8) 1 

C(46) 0.2614(2) 1.0055(2) 0.2449(2) 0.0450(9) 1 

C(47) 0.1875(2) 0.9915(2) 0.2636(2) 0.0380(8) 1 

C(48) 0.4070(2) 0.9713(3) 0.2373(2) 0.0649(12) 1 

N(5) -0.08781(14) 0.75321(12) 0.36357(12) 0.0240(5) 1 

C(49) -0.0823(2) 0.67981(15) 0.36943(15) 0.0224(6) 1 

cm -0.0890(2) 0.6357(2) 0.3082(2) 0.0262(6) 1 
C(51) -0.0794(2) 0.5620(2) 0.3169(2) 0.0319(7) 1 

C(52) -0.0634(2) 0.5305(2) 0.3839(2) 0.0384(8) 1 

C(53) -0.0589(2) 0.5730(2) 0.4431(2) 0.0338(7) 1 
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Atom X V z Ufeq) SOF 
C(54) -0.0680(2) 0.6472(2) 0.4373(2) 0.0272(6) 1 

C(55) -0.1054(2) 0.6699(2) 0.2354(2) 0.0307(7) I 

C(56) -0.1493(2) 0.6192(2) 0.1756(2) 0.0422(8) 1 

C(57) -0.0250(2) 0.6992(2) 0.2207(2) 0.0435(8) 1 

C(58) -0.0670(2) 0.6937(2) 0.5015(2) 0.0296(7) 1 

C(59) -0.1551(2) 0.7095(2) 0.5060(2) 0.0447(9) 1 

C(60) -0.0160(2) 0.6641(2) 0.5714(2) 0.0455(9) 1 

C(61) 0.3061(3) 0.7084(2) 0.2487(3) 0.0677(13) I 

C(62) 0.3707(3) 0.7262(3) 0.2178(3) 0.0740(14) I 
C(63) 0.4509(3) 0.7246(3) 0.2559(3) 0.085(2) 1 

C(64) 0.4702(3) 0.7074(3) 0.3249(3) 0.096(2) 1 

C(65) 0.4101(3) 0.6895(3) 0.3581(3) 0.088(2) 1 
C(66) 0.3290(3) 0.6895(3) 0.3208(3) 0.0728(13) 1 

C(67) 0.2172(4) 0.7097(4) 0.2071(3) 0.114(2) 1 

C(68) -0.0346(3) 1.0276(3) -0.0006(3) 0.0801(15) 1 

cm -0.1189(3) 1.0030(3) -0.0434(3) 0.085(2) 1 
C(70) -0.1876(4) 1.0581(4) -0.0474(3) 0.107(2) 0.50 

C(70') -0.1876(4) 1.0581(4) -0.0474(3) 0.107(2) 0.50 

car) -0.1859f7) 1.124U6) -0.0872f6) 0.09U3) 0.50 
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Table VI. Bond lengths [A] and angles [°] for (TTP)Hf=NAi^'^. 

Hf(l)-N(5) 1.859(2) C(28)-C(29) 1.393(5) 

Hf(l)-N(2) 2.178(2) C(29)-C(30) 1.389(5) 

Hf(l>-N(l) 2.181(2) C(30)-C(31) 1.374(5) 

Hf(l)-N(4) 2.193(2) C(31)-C(32) 1.372(6) 

Hf(l)-N(3) 2.193(2) C(31>-C(34) 1.523(5) 

N(IH:(4) 1.384(3) C(32)-C(33) 1.388(5) 

N(l>-C(l) 1.383(4) C(35)-C(40) 1.390(4) 

N(2)-C(9) 1.382(4) C(35)-C(36) 1.398(4) 

N(2>-C(6) 1.387(3) C(36)-C(37) 1.381(4) 

N(3)-C(14) 1.383(3) C(37)-C(38) 1.385(5) 

N(3)-C(ll) 1.388(4) C(38)-C(39) 1.391(4) 

N(4)-C(16) 1.381(3) C(38)-C(41) 1.518(4) 
N(4)-C(19) 1.382(4) C(39)-C(40) 1.389(4) 

C(l)-C(20) 1.407(4) C(42)-C(43) 1.384(4) 

C(IH:(2) 1.439(4) C(42)-C(47) 1.393(4) 

C(2)-C(3) 1.348(4) C(43)-C(44) 1.388(4) 

C(3K:(4) 1.432(4) C(44)-C(45) 1.377(5) 

C(4)-C(5) 1.405(4) C(45)-C(46) 1.392(5) 

C(5H:(6) 1.406(4) C(45>-C(48) 1.522(5) 

C(5>-C(21) 1.502(4) C(46>-C(47) 1.388(5) 

C(6)-C(7) 1.432(4) N(5)-C(49) 1.374(4) 
C(7)-C(8) 1.353(4) C(49)-C(54) 1.416(4) 

C(8)-C(9) 1.444(4) C(49)-C(50) 1.426(4) 

C(9>-C(10) 1.407(4) C(50)-C(51) 1.388(4) 

C(10)-C(ll) 1.413(4) C(50)-C(55) 1.513(4) 
C(10)-C(28) 1.489(4) C(51)-C(52) 1.391(4) 

C(ll)-C(12) 1.431(4) C(52)-C(53) 1.382(4) 

C(12)-C(13) 1.353(4) C(53)-C(54) 1.393(4) 

C(13>-C(14) 1.433(4) C(54)-C(58) 1.514(4) 

C(14>-C(15) 1.413(4) C(55)-C(57) 1.532(5) 

C(15)-C(16) 1.409(4) C(55)-C(56) 1.537(4) 
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Table VI. (continued) 

C(15>-C(35) 1.495(4) C(58)-C(60) 1.516(4) 

C(16)-C(17) 1.437(4) C(58)-C(59) 1.517(5) 

C(17)-C(18) 1.351(4) C(61)-C(62) 1.389(7) 

C(18)-C(19) 1.444(4) C(61)-C(66) 1.402(7) 

C(19)-C(20) 1.404(4) C(61)-C(67) 1.501(7) 

C(20)-C(42) 1.499(4) C(62)-C(63) 1.358(7) 

C(21)-C(22) 1.377(4) C(63)-C(64) 1.337(7) 

C(21)-C(26) 1.387(4) C(64)-C(65) 1.354(7) 

C(22)-C(23) 1.388(5) C(65)-C(66) 1.366(7) 

C(23)-C(24) 1.372(5) C(68)-C(69) 1.515(7) 

C(24)-C(25) 1.383(5) C(68)-C(68) #1 1.539(9) 

C(24)-C(27) 1.504(5) C(69)-C(70') 1.523(7) 

C(25)-C(26) 1.393(5) C(69)-C(70) 1.523(7) 

C(28)-C(33) 1.388(4) C(70')-C(7r) 1.458(12) 

N(5)-Hf(l)-N(2) 106.57(9) C(21)-C(22)-C(23) 121.1(3) 

N(5)-Hf(l)-N(l) 107.35(9) C(24)-C(23)-C(22) 121.5(4) 

N(2)-Hf(l)-N(l) 84.58(8) C(23)-C(24)-C(25) 117.3(3) 

N(5)-Hf(l>-N(4) 111.42(9) C(23)-C(24)-C(27) 121.8(4) 

N(2>-Hf(l)-N(4) 142.00(8) C(25)-C(24)-C(27) 120.9(4) 

N(l>-Hf(l)-N(4) 83.71(8) C(24)-C(25)-C(26) 122.1(3) 

N(5>-Hftl)-N(3) 110.36(9) C(21)-C(26)-C(25) 119.7(3) 

N(2>-Hf(l)-N(3) 83.99(8) C(33)-C(28)-C(29) 117.7(3) 

N(l)-Hf(l)-N(3) 142.27(8) C(33)-C(28)-C(10) 122.1(3) 

N(4)-Hf(l)-N(3) 83.56(8) C(29)-C(28)-C(10) 120.2(3) 

C(4)-N(1X:(1) 107.4(2) C(30)-C(29)-C(28) 120.6(3) 

C(4)-N(l)-Hf(l) 123.0(2) C(31)-C(30)-C(29) 121.4(4) 

C(l)-N(l>-Hf(l) 127.2(2) C(32)-C(31)-C(30) 118.0(3) 

C(9>-N(2)-C(6) 107.4(2) C(32)-C(31)-C(34) 121.1(4) 

C(9>-N(2)-Hf(l) 124.2(2) C(30)-C(31)-C(34) 120.8(4) 

C(6)-N(2>-Hf(l) 122.0(2) C(31)-C(32)-C(33) 121.6(3) 
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C(14)-N(3)-C(ll) 106.9(2) C(28)-C(33)-C(32) 120.6(3) 

C(14)-N(3)-Hf(l) 124.9(2) C(40)-C(35)-C(36) 118.0(3) 

C(ll)-N(3)-Hf(l) 124.8(2) C(40)-C(35)-C(15) 122.5(3) 

C(16)-N(4)-C(19) 107.3(2) C(36)-C(35)-C(15) 119.4(3) 

C(16)-N(4)-Hf(l) 124.7(2) C(37)-C(36)-C(35) 120.7(3) 

C(19)-N(4)-Hf(l) 126.8(2) C(36)-C(37)-C(38) 121.6(3) 

N(l)-C(l)-C(20) 125.3(3) C(37)-C(38)-C(39) 117.8(3) 

N(l)-C(l)-C(2) 108.2(2) C(37)-C(38)-C(41) 121.3(3) 

C(20)-C(l>-C(2) 126.4(3) C(39)-C(38)-C(41) 120.9(3) 

C(3>-C(2)-C(l) 107.9(3) C(40)-C(39)-C(38) 121.2(3) 

C(2)-C(3)-C(4) 107.9(3) C(39)-C(40)-C(35) 120.7(3) 

N(l>-C(4>-C(5) 125.6(3) C(43)-C(42)-C(47) 118.0(3) 

N(l)-C(4)-C(3) 108.5(2) C(43)-C(42)-C(20) 121.3(3) 

C(5>-C(4)-C(3) 125.8(3) C(47)-C(42)-C(20) 120.8(3) 

C(4)-C(5)-C(6) 126.2(3) C(42)-C(43)-C(44) 121.3(3) 

C(4>-C(5)-C(21) 116.6(3) C(45)-C(44)-C(43) 121.0(3) 

C(6)-C(5)-C(21) 117.2(2) C(44)-C(45)-C(46) 118.0(3) 

N(2)-C(6)-C(5) 125.7(2) C(44)-C(45)-C(48) 120.8(3) 

N(2)-C(6)-C(7) 108.5(2) C(46)-C(45)-C(48) 121.2(3) 

C(5)-C(6)-C(7) 125.9(3) C(47)-C(46)-C(45) 121.2(3) 

C(8>-C(7)-C(6) 108.2(3) C(46)-C(47)-C(42) 120.5(3) 

C(7)-C(8)-C(9) 107.4(3) C(49)-N(5)-Hf(l) 173.4(2) 

N(2)-C(9)-C(10) 125.7(2) N(5)-C(49)-C(54) 119.8(3) 

N(2)-C(9>-C(8) 108.5(2) N(5>-C(49>-C(50) 121.0(3) 

C(10)-C(9)-C(8) 125.7(3) C(54)-C(49)-C(50) 119.2(3) 

C(9>-C(10)-C(ll) 125.9(3) C(51)-C(50)-C(49) 119.1(3) 

C(9)-C(10>-C(28) 117.4(2) C(51)-C(50)-C(55) 121.3(3) 

C(ll>-C(10)-C(28) 116.6(3) C(49)-C(50)-C(55) 119.6(3) 

N(3>-C(ll>-C(10) 125.4(3) C(50)-C(51)-C(52) 121.4(3) 

N(3>-C(ll)-C(12) 108.9(2) C(53)-C(52>-C(51) 119.6(3) 

C(10)-C(ll>-C(12) 125.6(3) C(52)-C(53)-C(54) 121.2(3) 

C(13)-C(12)-C(ll) 107.6(3) C(53)-C(54)-C(49) 119.5(3) 

C(12)-C(13)-C(14) 107.9(3) C(53)-C(54)-C(58) 121.4(3) 

N(3)-C(14)-C(15) 125.1(3) C(49)-C(54)-C(58) 119.0(3) 
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Table VI. (continued) 

N(3)-C(14)-C(13) 108.7(2) 

C(15)-C(14)-C(13) 126.2(3) 

C(16)-C(15)-C(14) 125.5(3) 

C(16)-C(15)-C(35) 116.6(2) 

C(14)-C(15)-C(35) 117.9(3) 

N(4)-C(16)-C(15) 126.2(3) 

N(4)-C(16>-C(17) 108.8(2) 

C(15)-C(16)-C(17) 124.9(3) 

C(18)-C(17)-C(16) 107.8(3) 

C(17)-C(18)-C(19) 107.5(3) 

N(4)-C(19)-C(20) 126.1(2) 

N(4)-C(19)-C(18) 108.6(2) 

C(20)-C(19)-C(18) 125.3(3) 

C(19)-C(20)-C(l) 125.8(3) 

C(19>-C(20)-C(42) 117.0(2) 

C(l)-C(20)-C(42) 117.2(3) 

C(22)-C(21)-C(26) 118.4(3) 

C(22)-C(21)-C(5) 119.5(3) 

C(26)-C(21)-C(5) 122.1(3) 

C(50)-C(55>-C(57) 110.8(3) 

C(50)-C(55)-C(56) 113.0(3) 

C(57)-C(55)-C(56) 110.7(3) 

C(54)-C(58)-C(60) 114.9(3) 

C(54)-C(58)-C(59) 109.8(3) 

C(60)-C(58)-C(59) 110.9(3) 

C(62)-C(61)-C(66) 116.0(4) 

C(62>-C(61)-C(67) 121.7(5) 

C(66)-C(61)-C(67) 122.3(5) 

C(63)-C(62)-C(61) 121.2(5) 

C(64)-C(63)-C(62) 121.0(5) 

C(63)-C(64)-C(65) 120.6(5) 

C(64)-C(65)-C(66) 119.6(5) 

C(65)-C(66)-C(61) 121.5(5) 

C(69)-C(68)-C(68) #1 113.1(6) 

C(68)-C(69)-C(70') 113.9(5) 

C(68)-C(69)-C(70) 113.9(5) 

C(71 ')-C(70')-C(69) 119.0(6) 
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Table Vn. Crystal data and structure refinement for complex 4a, 
(TTP)Zr(N'ArC(=]SrBu)0). 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume, Z 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Crystal size 
6 range for data collection 
Limiting indices 
Reflections collected 
Independent reflections 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on p-
Final R indices [I > 2o(I)] 
R indices (all data) 
Largest diff. peak and hole 

a = 98.0192(14)° 
3 = 100.8337(14)" 
Y= 113.9894(11)° 

C^jH^AOZr 
1226.76 
173(2)K 
0.71073 A 
Triclinic 
PT 

a= 13.5421(10) A 
6= 15.4623(11) A 
c= 16.7239(12) A 
3050.0(4) A^ 2 
1.337 M^m^ 
0.229 mm"' 
1300 
0.40 X 0.30 X 0.30 mm 
1.69 to 28.86° 
-17 < A < 18, -20 < k 20, -19 < / < 21 
19079 
13540 (Ri„, = 0.0122) 
Full-matrix least-squares on F~ 
13540/0/658 

0.999 
R1 =0.0340, wR2 = 0.0910 
Rl= 0.0418, wR2 = 0.0954 
0.491 and-0.378 eA"' 
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Table Vm. Atomic coordinates [x 10*] and equivalent isotropic displacement parameters 
[A^ X 10^] for complex 4a. U(eq) is defined as one third of the trace of the orthogonalized 
Uy tensor. 

Atom X y z U(eq) 

Zr 7509(1) 1532(1) 2127(1) 25(1) 

0 8737(1) 2627(1) 3119(1) 39(1) 

N(l) 6456(1) 1671(1) 1013(1) 30(1) 

N(2) 7161(1) 144(1) 1260(1) 29(1) 
N(3) 7135(1) 508(1) 2960(1) 29(1) 

N(4) 6429(1) 2028(1) 2718(1) 29(1) 
N(5) 10533(1) 3614(1) 2974(1) 38(1) 

N(6) 9088(1) 2291(1) 1910(1) 31(1) 

C(l) 5921(1) 2269(1) 971(1) 33(1) 

C(2) 5556(2) 2283(1) 109(1) 36(1) 

C(3) 5888(2) 1726(1) -359(1) 37(1) 

C(4) 6442(1) 1331(1) 196(1) 31(1) 
C(5) 6829(1) 657(1) -65(1) 32(1) 

C(6) 7098(1) 71(1) 415(1) 31(1) 
C(7) 7228(2) -768(1) 80(1) 37(1) 
C(8) 7333(2) -1222(1) 704(1) 36(1) 
C(9) 7306(1) -649(1) 1444(1) 31(1) 
C(10) 7389(1) -867(1) 2235(1) 31(1) 

C(ll) 7311(1) -315(1) 2941(1) 30(1) 

C(12) 7399(2) -519(1) 3757(1) 34(1) 

C(13) 7266(2) 167(1) 4260(1) 34(1) 

C(14) 7086(1) 804(1) 3770(1) 30(1) 
C(15) 6848(1) 1570(1) 4060(1) 30(1) 
C(16) 6535(1) 2133(1) 3571(1) 30(1) 
C(17) 6217(2) 2868(1) 3872(1) 37(1) 
C(18) 5902(2) 3196(1) 3204(1) 40(1) 
C(19) 6025(1) 2669(1) 2486(1) 34(1) 
C(20) 5750(2) 2766(1) 1656(1) 34(1) 
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Table Vni. (continued) 

Atom X y z U(eq) 

C(21) 6943(1) 528(1) -945(1) 32(1) 

C(22) 6092(2) -149(2) -1616(1) 50(1) 

C(23) 6257(2) -269(2) -2411(1) 53(1) 

C(24) 7261(2) 285(2) -2556(1) 39(1) 

C(25) 8104(2) 977(2) -1886(1) 54(1) 

C(26) 7953(2) 1095(2) -1087(1) 52(1) 

C(27) 7442(2) 143(2) -3421(1) 53(1) 

C(28) 7569(2) -1743(1) 2333(1) 35(1) 

C(29) 8519(2) -1819(2) 2212(1) 45(1) 

C(30) 8714(2) -2605(2) 2355(1) 52(1) 

C(31) 7969(2) -3344(2) 2635(1) 48(1) 

C(32) 6999(2) -3292(2) 2725(1) 50(1) 

C(33) 6796(2) -2509(1) 2577(1) 42(1) 

C(34) 8219(3) -4167(2) 2841(2) 68(1) 

C(35) 6848(2) 1774(1) 4965(1) 33(1) 

C(36) 7821(2) 2396(1) 5584(1) 45(1) 

C(37) 7789(2) 2620(2) 6412(1) 55(1) 

C(38) 6808(2) 2225(2) 6640(1) 52(1) 

C(39) 5851(2) 1586(2) 6027(1) 67(1) 

C(40) 5867(2) 1367(2) 5199(1) 57(1) 

C(41) 6781(3) 2497(2) 7543(2) 82(1) 

C(42) 5202(2) 3417(1) 1500(1) 40(1) 

C(43) 5702(2) 4221(2) 1174(1) 50(1) 

C(44) 5187(2) 4831(2) 1052(1) 60(1) 

C(45) 4190(2) 4657(2) 1233(1) 61(1) 

C(46) 3688(2) 3858(2) 1554(2) 60(1) 

C(47) 4195(2) 3244(2) 1687(1) 49(1) 

C(48) 3650(3) 5338(2) 1101(2) 91(1) 

C(49) 9549(1) 2916(1) 2714(1) 31(1) 
C(50) 10924(2) 4270(2) 3812(1) 49(1) 

C(51) 10903(2) 3726(2) 4515(2) 73(1) 
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Atom X y z U(eq) 

C(52) 10208(2) 4823(2) 3883(2) 58(1) 

C(53) 12136(2) 4998(2) 3899(2) 70(1) 

C(54) 9721(1) 2472(1) 1310(1) 34(1) 

C(55) 9778(2) 3203(2) 882(1) 43(1) 

C(56) 10373(2) 3332(2) 274(1) 50(1) 

C(57) 10893(2) 2764(2) 94(1) 55(1) 

C(58) 10857(2) 2064(2) 531(2) 61(1) 

C(59) 10284(2) 1909(2) 1146(2) 49(1) 

C(60) 9290(2) 3908(2) 1114(2) 64(1) 

C(61) 8511(2) 3947(2) 346(2) 91(1) 

C(62) 10228(3) 4927(2) 1560(2) 73(1) 

C(63) 10357(3) 1211(2) 1686(2) 87(1) 

C(64) 10350(3) 291(2) 1186(3) 128(2) 
C(65) 11373(4) 1734(3) 2431(2) 114(2) 
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Table IX. Bond lengths [A] and angles [°] for complex 4a. 

Zr-0 2.0677(12) 

Zr-N(6) 2.1096(13) 

Zr-N(l) 2.2163(13) 

Zr-N(3) 2.2216(13) 

Zr-N(4) 2.2254(13) 

Zr-N(2) 2.2314(14) 

Zr-C(49) 2.6008(17) 

0-C(49) 1.3530(19) 

N(l)-C(l) 1.387(2) 

N(l)-C(4) 1.388(2) 

N(2).C(9) 1.384(2) 

N(2)-C(6) 1.3848(19) 

N(3)-C(ll) 1.384(2) 

N(3)-C(14) 1.3902(19) 

N(4)-C(19) 1.379(2) 

N(4)-C(16) 1.3861(19) 

N(5)-C(49) 1.269(2) 

N(5)-C(50) 1.471(3) 

N(6)-C(49) 1.401(2) 

N(6)-C(54) 1.424(2) 

C(l)-C(20) 1.399(2) 

C(l)-C(2) 1.440(2) 

C(2)-C(3) 1.348(3) 

C(3)-C(4) 1.436(2) 

C(4)-C(5) 1.398(2) 

C(5)-C(6) 1.401(2) 

C(5)-C(21) 1.501(2) 

C(6)-C(7) 1.432(2) 

C(7)-C(8) 1.353(2) 

C(8)-C(9) 1.434(2) 

C(9)-C(10) 1.405(2) 

C(10 -C(ll) 1.405(2) 

C(10 -C(28) 1.497(2) 

C(ll -C(12) 1.436(2) 

C(12 -C(13) 1.352(2) 

C(13 -C(14) 1.432(2) 

C(14 -C(15) 1.396(2) 

C(15 -C(16) 1.404(2) 

C(15 -C(35) 1.503(2) 

C(16 -C(17) 1.432(2) 

C(17 -C(18) 1.359(2) 

C(18 -C(19) 1.430(2) 

C(19 -C(20) 1.413(2) 

C(20 -C(42) 1.497(2) 

C(21 -C(22) 1.375(3) 

C(21 -C(26) 1.380(3) 

C(22 -C(23) 1.389(3) 

C(23 -C(24) 1.368(3) 

C(24 -C(25) 1.377(3) 

C(24 -C(27) 1.513(2) 

C(25 -C(26) 1.387(3) 

C(28 -C(29) 1.387(3) 

C(28 -C(33) 1.397(3) 

C(29 -C(30) 1.386(3) 

C(30 -C(31) 1.391(3) 

C(31 -C(32) 1.383(3) 

C(31 -C(34) 1.511(3) 

C(32 -C(33) 1.390(3) 
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Table IX. (continued) 

C(35)-C(40) 1.377(3) C(50)-C(51) 

C(35)-C(36) 1.383(3) C(50)-C(52) 

C(36)-C(37) 1.393(3) C(54)-C(59) 

C(37)-C(38) 1.371(3) C(54).C(55) 

C(38)-C(39) 1.373(4) C(55)-C(56) 

C(38)-C(41) 1.521(3) C(55)-C(60) 

C(39)-C(40) 1.385(3) C(56)-C(57) 

C(42)-C(47) 1.383(3) C(57)-C(58) 

C(42)-C(43) 1.395(3) C(58)-C(59) 

C(43)-C(44) 1.397(3) C(59)-C(63) 

C(44)-C(45) 1.367(4) C(60)-C(61) 

C(45)-C(46) 1.384(4) C(60)-C(62) 

C(45)-C(48) 1.524(3) C(63)-C(65) 

C(46)-C(47) 1.398(3) C(63)-C(64) 

C(50)-C(53) 1.532(3) 

0-Zr-N(6) 63.62(5) 0-Zr-C(49) 

O-Zr-N(l) 128.36(5) N(6)-Zr-C(49) 

N(6)-Zr-N(l) 98.15(5) N(l)-Zr-C(49) 

0-Zr-N(3) 90.39(5) N(3)-Zr-C(49) 

N(6)-Zr-N(3) 125.61(5) N(4)-Zr-C(49) 

N(l)-Zr-N(3) 132.82(5) N(2)-Zr-C(49) 

0-Zr-N(4) 80.85(5) C(49)-0-Zr 

N(6)-Zr-N(4) 132.57(5) C(l)-N(l)-C(4) 

N(l)-Zr.N(4) 79.44(5) C(l)-N(l)-Zr 

N(3)-Zr-N(4) 82.23(5) C(4)-N(l)-Zr 

0-Zr-N(2) 141.42(5) C(9)-N(2)-C(6) 

N(6)-Zr-N(2) 92.80(5) C(9)-N(2)-Zr 

N(l)-Zr-N(2) 82.58(5) C(6)-N(2)-Zr 

N(3)-Zr-N(2) 78.93(5) C(ll)-N(3)-C(14) 

N(4).Zr-N(2) 132.90(5) C(11)-N(3)-Zr 

1.536(3) 

1.541(3) 

1.403(3) 

1.404(3) 

1.399(3) 

1.529(3) 

1.366(3) 

1.377(3) 

1.392(3) 

1.522(3) 

1.527(4) 

1.531(4) 

1.506(5) 

1.541(4) 

31.11(5) 

32.53(5) 

116.28(5) 

110.55(5) 

106.66(5) 

120.33(5) 

96.76(10) 

106.28(13) 

128.87(11) 

123.28(11) 

105.92(13) 

129.27(10) 

122.05(11) 

106.30(13) 

128.57(10) 
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Table DC. (continued) 

C(14)-N(3)-Zr 121.27(11) C(19)-N(4)-Zr 126.74(10) 

C(19)-N(4)-C(16) 105.96(13) C(16)-N(4)-Zr 120.54(10) 

C(49)-N(5)-C(50) 120.92(16) C(10)-C(ll)-C(12) 125.32(15) 

C(49)-N(6)-C(54) 119.01(14) C(13)-C(12)-C(ll) 107.47(15) 

C(49)-N(6)-Zr 93.40(9) C(12)-C(13)-C(14) 107.78(14) 

C(54)-N(6)-Zr 146.76(12) N(3)-C(14)-C(15) 126.20(14) 

N(l)-C(l)-C(20) 125.46(14) N(3)-C(14)-C(13) 109.11(14) 

N(l)-C(l)-C(2) 109.12(14) C(15)-C(14)-C(13) 124.63(14) 

C(20)-C(l)-C(2) 125.41(16) C(14)-C(15)-C(16) 126.05(14) 

C(3)-C(2).C(1) 107.62(15) C(14)-C(15)-C(35) 117.49(14) 

C(2)-C(3)-C(4) 107.70(15) C(16)-C(15)-C(35) 116.32(14) 

N(l)-C(4)-C(5) 126.02(14) N(4)-C(16)-C(15) 125.37(15) 

N(I)-C(4)-C(3) 109.25(15) N(4)-C(16)-C(17) 109.65(14) 

C(5)-C(4).C(3) 124.59(15) C(15)-C(16)-C(17) 124.90(15) 

C(4)-C(5)-C(6) 125.73(14) C(18)-C(17)-C(16) 107.19(15) 

C(4)-C(5)-C(21) 117.52(14) C(17)-C(18)-C(19) 107.31(16) 

C(6)-C(5)-C(21) 116.73(15) N(4)-C(19)-C(20) 124.59(15) 

N(2)-C(6)-C(5) 125.83(15) N(4)-C(19)-C(18) 109.88(14) 

N(2)-C(6)-C(7) 109.46(14) C(20)-C(19)-C(18) 125.52(16) 

C(5).C(6).C(7) 124.38(15) C(l)-C(20)-C(19) 124.22(16) 

C(8)-C(7).C(6) 107.72(15) C(l)-C(20)-C(42) 118.28(15) 

C(7)-C(8)-C(9) 107.05(16) C(19)-C(20)-C(42) 117.46(15) 

N(2)-C(9)-C(10) 124.82(15) C(22)-C(21)-C(26) 118.12(16) 

N(2)-C(9)-C(8) 109.81(14) C(22)-C(21)-C(5) 122.98(15) 

C(10>C(9)-C(8) 125.36(16) C(26).C(21)-C(5) 118.88(16) 

C(9)-C(10)-C(ll) 124.20(15) C(21)-C(22)-C(23) 120.63(18) 

C(9)-C(10)-C(28) 118.12(15) C(24)-C(23)-C(22) 121.56(18) 

C(ll)-C(10)-C(28) 117.68(14) C(23)-C(24)-C(25) 117.72(16) 

N(3)-C(ll)-C(10) 125.36(14) C(23)-C(24)-C(27) 121.35(19) 

N(3)-C(ll)-C(12) 109.32(14) C(25)-C(24)-C(27) 120.93(18) 
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Table DC. (continued) 

C(24)-C(25)-C(26) 121.25(18) N(5)-C(49)-N(6) 124.69(15) 

C(21)-C(26).C(25) 120.69(19) 0-C(49)-N(6) 106.16(14) 

C(29)-C(28)-C(33) 117.26(17) N(5)-C(49)-Zr 177.14(13) 

C(29)-C(28)-C(10) 121.82(16) 0-C(49)-Zr 52.14(8) 

C(33)-C(28)-C(10) 120.89(16) N(6)-C(49)-Zr 54.07(8) 

C(28)-C(29)-C(30) 121.49(19) N(5)-C(50)-C(53) 105.63(19) 

C(29)-C(30)-C(31) 121.16(19) N(5).C(50)-C(51) 112.40(18) 

C(32)-C(31)-C(30) 117.59(18) C(53)-C(50)-C(51) 109.3(2) 

C(32)-C(31)-C(34) 121.4(2) N(5)-C(50)-C(52) 110.60(17) 

C(30)-C(31)-C(34) 121.0(2) C(53)-C(50)-C(52) 109.42(19) 

C(31)-C(32)-C(33) 121.38(19) C(51)-C(50)-C(52) 109.4(2) 

C(32)-C(33)-C(28) 121.00(18) C(59)-C(54)-C(55) 120.17(16) 

C(40)-C(35)-C(36) 117.99(17) C(59)-C(54)-N(6) 119.28(16) 

C(40)-C(35)-C(15) 120.76(16) C(55)-C(54)-N(6) 120.55(16) 

C(36)-C(35)-C(15) 121.22(15) C(56)-C(55)-C(54) 118.66(19) 

C(35)-C(36).C(37) 120.24(19) C(56)-C(55)-C(60) 119.57(18) 

C(38)-C(37)-C(36) 121.6(2) C(54)-C(55)-C(60) 121.59(16) 

C(39)-C(38)-C(37) 117.81(18) C(57)-C(56)-C(55) 121.3(2) 

C(39)-C(38)-C(41) 121.2(2) C(56)-C(57)-C(58) 119.79(18) 

C(37)-C(38)-C(41) 120.9(2) C(57)-C(58)-C(59) 121.3(2) 

C(38)-C(39)-C(40) 121.2(2) C(58)-C(59)-C(54) 118.68(19) 

C(35)-C(40)-C(39) 121.1(2) C(58)-C(59)-C(63) 120.61(19) 

C(47)-C(42).C(43) 118.43(18) C(54)-C(59)-C(63) 120.46(17) 

C(47>C(42).C(20) 120.86(17) C(61).C(60)-C(55) 111.6(2) 

C(43)-C(42)-C(20) 120.71(18) C(61)-C(60)-C(62) 110.7(2) 

C(42)-C(43).C(44) 119.7(2) C(55)-C(60)-C(62) 110.8(2) 

C(45)-C(44).C(43) 121.9(2) C(65)-C(63)-C(59) 110.1(2) 

C(44)-C(45).C(46) 118.7(2) C(65)-C(63)-C(64) 111.4(3) 

C(44>C(45)-C(48) 120.9(3) C(59)-C(63)-C(64) 112.6(3) 

C(46)-C(45)-C(48) 120.4(3) 

C(45)-C(46).C(47) 120.3(2) 

C(42)-C(47)-C(46) 121.1(2) 

N(5)-C(49)-0 129.14(16) 



www.manaraa.com

156 

Table X. Crystal data and structure refinement for complex 4b, (TTP)Zr(NBuC(=Nl*r)0). 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume, Z 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Crystal size 
6 range for data collection 
Limiting indices 
Reflections collected 
Independent reflections 
Completeness to 9 = 23.35° 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on 
Final R indices [I > 2o(I)] 
R indices (all data) 
Largest diif. peak and hole 

C,oH„N,OZr 
1229.70 
173(2)K 
0.71073 A 
Triclinic 
PT 

a = 12.9237(8) A a = 97.1370(10)° 
b = 16.3912(10) A p = 105.1960(10)° 
c = 16.6590(10) A Y = 100.5320(10)® 
3292.6(3) 2 
1.240 Mg/m^ 
0.218 mm'* 
1294 
0.20 X 0.10 X 0.05 mm 
1.28 to 23.35° 
-13 < h <  14,-17 < yt < 18,-18 < 1 < 17 
15220 
9395 (Ri,, = 0.0396) 
98.1% 
Full-matrix least-squares on F^ 
9395 / 37 / 729 

0.995 
R1 =0.0547, wR2 = 0.1457 
R1 =0.0785, wR2 = 0.1580 
1.032 and -0.658 eA'^ 
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Table XI. Atomic coordinates [x 10^] and equivalent isotropic displacement parameters [A^ 
X 10^] for complex 4b. U(eq) is defined as one third of the trace of the orthogonalized Uy 
tensor. 

Atom X y z U(eq) 

Zr 1187(1) -1536(1) 1446(1) 22(1) 

0 2275(2) -1710(2) 761(2) 27(1) 

N(l) 1686(3) -729(2) 2716(2) 27(1) 

N(2) -271(3) -2054(2) 1868(2) 24(1) 

N(3) -153(3) -1672(2) 269(2) 23(1) 

N(4) 1687(3) -265(2) 1117(2) 23(1) 

N(5) 1780(3) -2670(2) 1484(2) 28(1) 

N(6) 2807(3) -2977(2) 521(2) 28(1) 

C(l) 2533(4) -9(3) 3010(3) 29(1) 

C(2) 2841(4) 170(3) 3911(3) 35(1) 
C(3) 2167(4) -407(3) 4162(3) 36(1) 
C(4) 1431(4) -961(3) 3428(2) 29(1) 
C(5) 528(4) -1578(3) 3420(3) 30(1) 

C(6) -283(3) -2061(3) 2692(2) 26(1) 
C(7) -1249(4) -2646(3) 2702(3) 35(1) 

C(8) -1831(4) -2987(3) 1893(3) 32(1) 

C(9) -1222(3) -2618(3) 1370(2) 26(1) 

C(10) -1582(3) -2780(2) 476(2) 26(1) 

C(ll) -1080(3) -2326(3) -28(2) 26(1) 

C(12) -1441(4) -2462(3) -936(3) 29(1) 
C(13) -747(4) -1899(3) -1185(3) 29(1) 
C(14) 55(3) -1401(3) -449(2) 24(1) 
C(15) 913(3) -731(2) -433(2) 24(1) 

C(16) 1607(3) -175(2) 290(2) 24(1) 
C(17) 2386(4) 569(3) 282(3) 30(1) 
C(18) 2942(4) 917(3) 1089(3) 29(1) 
C(19) 2531(3) 393(2) 1617(2) 24(1) 
C(20) 2949(3) 506(3) 2499(3) 27(1) 

C(21) 339(4) -1721(3) 4253(3) 34(1) 
C(22) -289(5) -1279(4) 4601(3) 59(2) 
C(23) -537(5) -1440(5) 5331(3) 68(2) 
C(24) -157(5) -2047(4) 5740(3) 59(2) 
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Table XI. (continued) 

Atom X y z U(eq) 

C(25) 489(6) -2484(4) 5412(3) 76(2) 

C(26) 741(5) -2321(4) 4668(3) 59(2) 

C(27) -422(6) -2245(5) 6546(4) 95(3) 

C(28) -2571(3) -3473(2) 44(2) 25(1) 

C(29) -3559(4) -3315(3) -401(3) 32(1) 

C(30) -4449(4) -3974(3) -824(3) 36(1) 

C(31) -4379(4) -4808(3) -837(3) 32(1) 

C(32) -3397(4) -4966(3) -379(3) 34(1) 

C(33) -2503(4) -4311(3) 53(3) 32(1) 

C(34) -5328(4) -5528(3) -1308(3) 44(1) 

C(35) 1168(3) -619(2) -1243(2) 25(1) 

C(36) 636(4) -180(3) -1809(3) 46(1) 

C(37) 967(5) -49(3) -2520(3) 51(2) 

C(38) 1818(4) -352(3) -2685(3) 33(1) 

C(39) 2323(4) -818(3) -2130(3) 37(1) 

C(40) 2015(4) -943(3) -1418(3) 36(1) 

C(41) 2194(4) -203(3) -3455(3) 46(1) 

C(42) 3898(4) 1237(3) 2920(3) 32(1) 

C(43) 3784(4) 2061(3) 2917(3) 41(1) 

C(44) 4679(5) 2734(3) 3268(3) 56(2) 

C(45) 5714(5) 2611(4) 3629(3) 58(2) 

C(46) 5829(5) 1794(4) 3628(4) 58(2) 

C(47) 4943(4) 1115(3) 3286(3) 43(1) 

C(48) 6691(6) 3364(4) 4009(5) 94(2) 

C(49) 2339(3) -2496(3) 898(3) 26(1) 
C(50) 1740(4) -3481(3) 1798(3) 39(1) 

C(51) 1174(5) -3453(3) 2490(4) 58(2) 

C(52) 2909(5) -3593(4) 2180(4) 60(2) 

C(53) 1087(5) -4215(3) 1082(4) 56(2) 

C(54) 3281(4) -2665(3) -96(3) 29(1) 
C(55) 4219(4) -2002(3) 120(3) 32(1) 
C(56) 4638(4) -1749(3) -519(3) 37(1) 
C(57) 4176(4) -2145(3) -1349(3) 38(1) 
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Atom X y z U(eq) 

C(58) 3272(4) -2807(3) -1557(3) 38(1) 

C(59) 2812(4) -3087(3) -941(3) 31(1) 

C(60) 4804(4) -1566(3) 1032(3) 37(1) 

C(61) 5968(4) -1721(3) 1317(3) 46(1) 

C(62) 4831(5) -618(3) 1142(4) 54(1) 

C(63) 1785(4) -3792(3) -1168(3) 36(1) 

C(64) 767(4) -3420(3) -1279(4) 53(1) 

C(65) 1664(5) -4451(3) -1939(3) 61(2) 

C(IOO) -2680(8) -4124(8) -3834(9) 398(15) 

C(lOl) -3643(9) -4645(7) -4392(14) 407(16) 

C(102) -4513(15) -5101(9) -4166(8) 252(8) 

C(103) -4199(9) -4916(6) -3283(7) 164(4) 

C(104) -3256(8) -4404(6) -2692(7) 141(4) 

C(105) -2408(11) -3962(7) -2952(9) 194(5) 

C(200) 5445(7) 1508(5) -3742(5) 137(3) 

C(201) 5431(8) 1936(4) -4382(5) 148(4) 

C(202) 4645(7) 2364(5) -4632(6) 127(3) 

C(203) 3850(8) 2378(6) -4250(5) 149(4) 

C(204) 3891(8) 1944(5) -3612(5) 146(4) 

C(205) 4663(6) 1508(5) -3344(6) 131(3) 

C(300) 1029(19) -5219(12) 5263(14) 273(9) 

C(301) 701(14) -4930(9) 4538(10) 200(6) 

C(302) -284(12) -4728(8) 4300(8) 165(4) 
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Table Xn. Bond lengths [A] and angles [°] for complex 4b. 

Zr-0 2.066(3) C(14).C(15) 1.402(6) 

Zr-N(5) 2.137(3) C(15)-C(16) 1.395(6) 

Zr-N(3) 2.206(3) C(15)-C(35) 1.495(5) 

Zr-N(l) 2.217(3) C(16)-C(17) 1.437(6) 

Zr-N(2) 2.241(3) C(17)-C(18) 1.343(6) 

Zr-N(4) 2.244(3) C(18)-C(19) 1.434(5) 

Zr-C(49) 2.596(4) C(19)-C(20) 1.403(6) 

0-C(49) 1.349(5) C(20)-C(42) 1.494(6) 

N(l)-C(4) 1.390(5) C(21)-C(26) 1.371(7) 

N(l)-C(l) 1.391(5) C(21)-C(22) 1.371(7) 

N(2)-C(6) 1.377(5) C(22)-C(23) 1.379(7) 

N(2)-C(9) 1.384(5) C(23)-C(24) 1.366(8) 

N(3)-C(ll) 1.385(5) C(24)-C(25) 1.368(9) 

N(3)-C(14) 1.399(5) C(24)-C(27) 1.528(7) 

N(4)-C(16) 1.384(5) C(25)-C(26) 1.405(7) 

N(4)-C(19) 1.384(5) C(28)-C(29) 1.385(6) 

N(5)-C(49) 1.387(5) C(28)-C(33) 1.394(6) 

N(5)-C(50) 1.485(5) C(29)-C(30) 1.386(6) 

N(6)-C(49) 1.277(5) C(30)-C(31) 1.384(6) 

N(6)-C(54) 1.428(5) C(31)-C(32) 1.387(6) 

C(l)-C(20) 1.406(6) C(31)-C(34) 1.500(6) 

C(l)-C(2) 1.425(6) C(32)-C(33) 1.387(6) 

C(2)-C(3) 1.349(6) C(35)-C(36) 1.376(6) 

C(3)-C(4) 1.422(6) C(35)-C(40) 1.381(6) 

C(4)-C(5) 1.394(6) C(36)-C(37) 1.388(6) 

C(5)-C(6) 1.410(6) C(37)-C(38) 1.364(6) 

C(5)-C(21) 1.510(5) C(38)-C(39) 1.380(6) 
C(6)-C(7) 1.434(6) C(38)-C(41) 1.517(6) 
C(7)-C(8) 1.350(6) C(39)-C(40) 1.374(6) 
C(8)-C(9) 1.436(6) C(42)-C(43) 1.386(6) 
C(9)-C(10) 1.413(6) C(42)-C(47) 1.391(6) 
C(10)-C(ll) 1.394(6) C(43)-C(44) 1.384(7) 
C(10)-C(28) 1.493(6) C(44)-C(45) 1.378(8) 

C(ll)-C(12) 1.436(5) C(45)-C(46) 1.375(8) 

C(12>C(13) 1.347(6) C(45)-C(48) 1.528(8) 
C(13).C(14) 1.422(6) C(46)-C(47) 1.381(7) 
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Table Xn. (continued) 

C(50)-C(51) 1.519(6) N(5)-Zr-N(l) 111.73(12) 
C(50)-C(53) 1.525(7) N(3)-Zr-N(l) 134.72(11) 

C(50)-C(52) 1.532(7) 0-Zr-N(2) 149.98(11) 

C(54)-C(55) 1.404(6) N(5)-Zr-N(2) 93.40(12) 

C(54)-C(59) 1.409(6) N(3)-Zr-N(2) 79.62(11) 

C(55)-C(56) 1.389(6) N(l)-Zr-N(2) 81.47(12) 

C(55)-C(60) 1.524(6) 0-Zr-N(4) 76.15(10) 

C(56)-C(57) 1.375(7) N(5)-Zr-N(4) 137.36(12) 

C(57)-C(58) 1.376(7) N(3)-Zr-N(4) 81.23(12) 

C(58)-C(59) 1.398(6) N(l)-Zr-N(4) 79.70(11) 
C(59)-C(63) 1.519(6) N(2)-Zr-N(4) 129.24(11) 
C(60)-C(61). 1.533(6) 0-Zr-C(49) 31.08(11) 
C(60)-C(62) 1.535(6) N(5)-Zr-C(49) 32.26(12) 

C(63)-C(64) 1.527(6) N(3)-Zr-C(49) 99.36(12) 
C(63)-C(65) 1.527(6) N(l)-Zr-C(49) 125.42(12) 
C(I00)-C(101) 1.397(5) N(2)-Zr-C(49) 122.30(12) 

C(100)-C(105) 1.397(5) N(4)-Zr-C(49) 106.95(12) 

C(I01)-C(102) 1.397(5) C(49)-0-Zr 96.7(2) 

C(102)-C(103) 1.397(5) C(4).N(1)-C(1) 105.9(3) 

C(103)-C(104) 1.396(5) C(4)-N(l)-Zr 125.8(3) 

C(104)-C(105) 1.396(5) C(l)-N(l)-Zr 126.2(3) 
C(200)-C(201) 1.345(4) C(6)-N(2)-C(9) 105.8(3) 

C(200)-C(205) 1.346(4) C(6)-N(2)-Zr 126.2(3) 
C(201)-C(202) 1.345(4) C(9)-N(2)-Zr 125.9(2) 
C(202>C(203) 1.345(4) C(ll)-N(3)-C(14) 105.9(3) 

C(203)-C(204) 1.346(4) C(ll)-N(3)-Zr 125.6(2) 

C(204>C(205) 1.345(4) C(14)-N(3)-Zr 121.3(3) 

C(300)-C(301) 1.346(11) C(16)-N(4)-C(19) 105.8(3) 

C(300)-C(302)#l 1.35(2) C(16)-N(4)-Zr 121.1(3) 
C(301>C(302) 1.345(11) C(19)-N(4)-Zr 126.0(2) 
C(302)-C(300)#l 1.35(2) C(49)-N(5)-C(50) 120.4(3) 

C(49).N(5)-Zr 92.4(2) 
0-Zr-N(5) 63.13(11) C(50)-N(5)-Zr 147.0(3) 
0-Zr-N(3) 90.79(11) C(49)-N(6)-C(54) 117.7(3) 

N(5)-Zr-N(3) 110.13(12) N(l)-C(l)-C(20) 125.4(4) 
0-Zr-N(l) 123.28(12) N(l)-C(l)-C(2) 109.2(4) 
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Table XII. (continued) 

C(43)-C(42)-C(47) 117.5(4) C(56).C(57)-C(58) 119.5(4) 

C(43)-C(42)-C(20) 121.3(4) C(57)-C(58)-C(59) 121.3(4) 

C(47)-C(42)-C(20) 121.2(4) C(58)-C(59)-C(54) 118.6(4) 

C(44)-C(43)-C(42) 121.0(5) C(58)-C(59).C(63) 121.8(4) 

C(45)-C(44)-C(43) 121.4(5) C(54).C(59)-C(63) 119.5(4) 

C(46)-C(45)-C(44) 117.6(5) C(55)-C(60)-C(61) 110.8(4) 

C(46)C(45)-C(48) 121.9(6) C(55)-C(60)-C(62) 111.0(4) 
C(44)-C(45)-C(48) 120.5(6) C(61)-C(60).C(62) 111.0(4) 
C(45)-C(46)-C(47) 121.8(5) C(59)-C(63)-C(64) 109.9(4) 

C(46)-C(47)-C(42) 120.8(5) C(59)-C(63)-C(65) 114.2(4) 

N(6)-C(49)-0 124.6(4) C(64)-C(63)-C(65) 111.0(4) 

N(6)-C(49)-N(5) 128.3(4) C(101)-C(100)-C(105) 126.6(17) 

0-C(49)-N(5) 107.1(3) C(102)-C(101)-C(100) 126(2) 

N(6)-C(49)-Zr 171.6(3) C(101)-C(102)-C(103) 105.0(18) 
0-C(49)-Zr 52.23(17) C(104)-C(103)-C(102) 131.9(14) 
N(5)-C(49)-Zr 55.35(18) C(105)-C(104)-C(103) 120.9(12) 
N(5)-C(50)-C(51) 108.2(3) C(104)-C(105)-C(100) 109.7(13) 
N(5)-C(50)-C(53) 110.2(4) C(201)-C(200)-C(205) 119.7(10) 
C(51)-C(50)-C(53) 109.1(4) C(202)-C(201)-C(200) 120.9(10) 
N(5)-C(50)-C(52) 110.2(4) C(203)-C(202)-C(201) 121.0(10) 
C(51)-C(50)-C(52) 108.2(4) C(202)-C(203)-C(204) 116.4(11) 
C(53)-C(50)-C(52) 110.8(4) C(205)-C(204)-C(203) 124.3(11) 
C(55)-C(54)-C(59) 120.1(4) C(204)-C(205)-C(200) 117.7(10) 
C(55)-C(54)-N(6) 122.5(4) C(301)-C(300)-C(302)#l 113.3(18) 
C(59)-C(54)-N(6) 117.2(4) C(302)-C(301)-C(300) 121.2(18) 
C(56)-C(55)-C(54) 118.8(4) C(301)-C(302)-C(300)#l 

C(56)-C(55).C(60) 119.0(4) 125.6(14) 

C(54)-C(55)-C(60) 122.2(4) 
C(57)-C(56)-C(55) 121.7(5) 
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Table Xm. Crystal data and structure refinement for complex 7a, 
(TTP)Hf(NAr'^C(=m>r)NTr). 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume, Z 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Crystal size 
6 range for data collection 
Limiting indices 
Reflections collected 
Independent reflections 
Completeness to 0 = 28.34® 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on F* 
Final R indices [I > 2a(l)] 
R indices (all data) 
Largest difif. peak and hole 

a = 90° 
P = 91.7960(10)° 
y = 90° 

C67H67HfN7 • 3/2 toluene 
1274.96 
173(2)K 
0.71073 A 
Monoclinic 
P2,/c 
a = 14.8756(8) A 
6= 16.7514(9) A 
c = 26.1874(15) A 
6522.4(6) A^ 4 
1.298 Mg/m^ 
1.646 mm"' 
2636 
0.30 X 0.20 X 0.20 mm 
1.37 to 28.34° 
-15 </i< 19,-21 < 21,-33 < /  < 34 
40118 
15118 (Ri^ = 0.0352) 
92.8% 
Full-matrix least-squares on F^ 
15118/0/676 

1.027 
R1 =0.0316, wR2 = 0.0814 
R1 = 0.0401, wR2 = 0.0850 
1.414 and-1.744 eA'^ 
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Table XIV. Atomic coordinates [x 10^] and equivalent isotropic displacement parameters 
[A^ X 10^] for complex 7a. U(eq) is defined as one third of the trace of the orthogonalized 
Ujj tensor. 

Atom X y z U(eq) 

Hf 2993(1) 5101(1) 3448(1) 22(1) 

N(l) 2141(1) 4106(1) 3749(1) 24(1) 

N(2) 1774(1) 5779(1) 3593(1) 26(1) 

N(3) 3595(2) 6141(1) 3871(1) 27(1) 
N(4) 4000(2) 4472(1) 3936(1) 27(1) 

N(5) 2721(2) 4610(1) 2700(1) 26(1) 

N(6) 3738(2) 5559(1) 2853(1) 27(1) 

N(7) 3784(2) 5004(1) 2030(1) 35(1) 

C(l) 2418(2) 3352(1) 3903(1) 27(1) 

C(2) 1654(2) 2830(2) 3918(1) 33(1) 

C(3) 922(2) 3253(2) 3765(1) 33(1) 

C(4) 1223(2) 4053(2) 3659(1) 28(1) 
C(5) 652(2) 4683(2) 3513(1) 29(1) 
C(6) 902(2) 5491(2) 3501(1) 28(1) 
C(7) 305(2) 6147(2) 3419(1) 35(1) 

C(8) 787(2) 6826(2) 3471(1) 36(1) 

C(9) 1698(2) 6608(1) 3587(1) 28(1) 

C(10) 2397(2) 7138(1) 3713(1) 27(1) 

C(ll)  3270(2) 6913(1) 3865(1) 29(1) 

C(12) 3946(2) 7451(2) 4065(1) 37(1) 

C(13) 4685(2) 7017(2) 4182(1) 38(1) 
C(14) 4481(2) 6198(2) 4052(1) 29(1) 
C(15) 5086(2) 5570(2) 4108(1) 30(1) 

C(16) 4858(2) 4759(2) 4062(1) 29(1) 
C(17) 5442(2) 4109(2) 4200(1) 36(1) 

C(18) 4944(2) 3438(2) 4188(1) 36(1) 
C(19) 4042(2) 3648(2) 4026(1) 29(1) 
C(20) 3311(2) 3132(1) 4014(1) 29(1) 
C(21) -309(2) 4475(2) 3392(1) 30(1) 
C(22) -522(2) 3995(2) 2971(1) 37(1) 
C(23) -1401(2) 3757(2) 2868(1) 41(1) 
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Atom X y U(eq) 

C(24) -2098(2) 4002(2) 3173(1) 40(1) 

C(25) -1884(2) 4489(2) 3588(1) 46(1) 

C(26) -1001(2) 4719(2) 3698(1) 41(1) 

C(27) -3054(2) 3732(2) 3067(2) 57(1) 

C(28) 2197(2) 8014(1) 3711(1) 28(1) 

C(29) 1611(2) 8343(2) 4050(1) 39(1) 

C(30) 1439(2) 9159(2) 4049(1) 42(1) 

C(31) 1849(2) 9659(2) 3710(1) 38(1) 

C(32) 2443(2) 9335(2) 3378(1) 41(1) 

C(33) 2624(2) 8522(2) 3375(1) 36(1) 

C(34) 1654(2) 10550(2) 3711(2) 55(1) 

C(35) 6039(2) 5796(2) 4246(1) 32(1) 

C(36) 6522(2) 6247(2) 3905(1) 42(1) 

C(37) 7383(2) 6513(2) 4029(1) 52(1) 

C(38) 7788(2) 6335(2) 4502(1) 47(1) 

C(39) 7302(2) 5878(2) 4840(1) 45(1) 

C(40) 6448(2) 5614(2) 4716(1) 37(1) 

C(41) 8719(2) 6639(3) 4636(2) 75(1) 

C(42) 3497(2) 2273(2) 4156(1) 31(1) 

C(43) 3208(2) 1965(2) 4616(1) 44(1) 

C(44) 3382(3) 1174(2) 4743(1) 49(1) 

C(45) 3840(2) 673(2) 4425(1) 40(1) 

C(46) 4137(2) 985(2) 3971(1) 40(1) 

C(47) 3964(2) 1777(2) 3840(1) 36(1) 

C(48) 3981(3) -200(2) 4563(2) 53(1) 

C(49) 3431(2) 5041(1) 2470(1) 26(1) 
C(50) 2009(2) 4311(2) 2372(1) 29(1) 
C(51) 1875(2) 3476(2) 2320(1) 31(1) 
C(52) 1243(2) 3202(2) 1957(1) 41(1) 
C(53) 747(2) 3724(2) 1655(1) 48(1) 
C(54) 833(2) 4536(2) 1731(1) 44(1) 

C(55) 1449(2) 4846(2) 2095(1) 36(1) 

C(56) 2425(2) 2887(2) 2642(1) 36(1) 
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Table XIV. (continued) 

Atom X y z U(eq) 

C(57) 3372(2) 2780(2) 2459(1) 56(1) 

C(58) 1980(3) 2069(2) 2686(1) 58(1) 

C(59) 1457(2) 5750(2) 2176(1) 43(1) 

C(60) 1977(3) 6209(2) 1782(2) 57(1) 

C(61) 497(3) 6087(2) 2181(1) 57(1) 

C(62) 4502(2) 6093(2) 2769(1) 33(1) 

C(63) 5372(2) 5644(2) 2660(1) 45(1) 

C(64) 4272(2) 6721(2) 2357(1) 46(1) 

C(65) 3613(2) 4365(2) 1657(1) 47(1) 

C(66) 3271(4) 4711(3) 1155(1) 81(1) 

C(67) 4512(3) 3929(2) 1593(2) 73(1) 
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Table XV. (continued) 

C(56)-C(58) 
C(59)-C(60) 
C(59)-C(61) 
C(62)-C(63) 

1.527(4) 
1.517(5) 
1.535(5) 
1.531(4) 

C(62)-C(64) 
C(65)-C(66) 
C(65)-C(67) 

1.537(4) 
1.512(5) 
1.538(5) 

N(6)-Hf-N(5) 63.21(8) C(49)-N(5)-Hf 94.01(15) 
N(6)-Hf-N(2) 113.66(8) C(50)-N(5)-Hf 142.54(17) 
N(5)-Hf-N(2) 102.89(8) C(49)-N(6)-C(62) 120.7(2) 
N(6)-Hf-N(4) 104.02(8) C(49)-N(6)-Hf 98.01(15) 
N(5)-Hf-N(4) 116.76(8) C(62)-N(6)-Hf 140.07(17) 
N(2)-Hf-N(4) 134.46(8) C(49)-N(7)-C(65) 124.5(2) 
N(6)-Hf-N(3) 82.56(8) N(l)-C(l)-C(20) 124.9(2) 
N(5)-Hf-N(3) 144.09(8) N(l)-C(l)-C(2) 109.5(2) 
N(2)-Hf-N(3) 80.23(8) C(20)-C(l)-C(2) 125.5(2) 
N(4)-Hf-N(3) 80.27(7) C(3)-C(2)-C(l) 107.8(2) 
N(6)-Hf-N(l) 148.38(8) C(2)-C(3)-C(4) 106.9(2) 
N(5)-Hf-N(l) 86.77(8) N(1).C(4)-C(5) 125.9(2) 
N(2)-Hf-N(l) 81.05(8) N(l)-C(4)-C(3) 109.8(2) 
N(4)-Hf-N(l) 79.82(8) C(5)-C(4)-C(3) 124.2(3) 
N(3)-Hf-N(l) 128.63(7) C(4)-C(5)-C(6) 125.0(2) 
N(6)-Hf-C(49) 31.13(8) C(4).C(5)-C(21) 116.8(2) 
N(5)-Hf-C(49) 32.33(8) C(6)-C(5)-C(21) 118.1(2) 
N(2)-Hf-C(49) 114.55(8) N(2)-C(6)-C(5) 125.0(2) 
N(4)-Hf-C(49) 110.95(8) N(2)-C(6)-C(7) 109.3(2) 
N(3)-Hf-C(49) 113.54(8) C(5)-C(6)-C(7) 125.6(2) 
N(l)-Hf-C(49) 117.77(7) C(8).C(7)-C(6) 108.0(3) 
C(4).N(1K(1) 106.0(2) C(7)-C(8)-C(9) 107.7(2) 
C(4)-N(l)-Hf 123.54(16) N(2)-C(9)-C(10) 124.8(2) 
C(l)-N(l)-Hf 127.71(17) N(2)-C(9)-C(8) 109.5(2) 
C(9).N(2)-C(6) 105.5(2) C(10)-C(9)-C(8) 125.6(2) 
C(9)-N(2)-Hf 125.79(17) C(9)-C(10)-C(ll) 125.0(2) 
C(6)-N(2)-Hf 124.19(16) C(9)-C(10)-C(28) 118.4(2) 
C(11)-N(3>C(14) 105.5(2) C(ll)-C(10)-C(28) 116.5(2) 
C(ll)-N(3>Hf 126.14(17) N(3)-C(ll)-C(10) 125.2(2) 
C(14)-N(3)-Hf 125.62(16) N(3).C(11)-C(12) 110.0(2) 
C(16)-N(4)-C(19) 105.4(2) C(10)-C(ll)-C(12) 124.7(2) 
C(16>N(4)-Hf 124.84(16) C(13)-C(12)-C(ll) 107.5(2) 
C(19)-N(4>Hf 126.38(17) C(12)-C(13)-C(14) 107.2(2) 
C(49)-N(5)-C(50) 117.8(2) N(3)-C(14)-C(15) 126.1(2) 
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Table XV. (continued) 

N(3)-C(14)-C(13) 109.6(2) C(36)-C(37)-C(38) 120.6(3) 
C(15)-C(14)-C(13) 124.3(3) C(39)-C(38)-C(37) 117.7(3) 
C(14)-C(15)-C(16) 124.7(2) C(39)-C(38)-C(41) 122.0(3) 
C(14)-C(15)-C(35) 116.1(2) C(37)-C(38)-C(41) 120.3(4) 
C(16)-C(15)-C(35) 119.3(2) C(40)-C(39)-C(38) 121.6(3) 
N(4>C(16)-C(15) 124.9(2) C(39)-C(40)-C(35) 120.9(3) 
N(4)-C(16)-C(17) 109.8(2) C(47)-C(42)-C(43) 118.2(2) 
C(15)-C(16)-C(17) 124.8(3) C(47)-C(42)-C(20) 121.2(2) 
C(18)-C(17)-C(16) 107.5(3) C(43)-C(42)-C(20) 120.6(2) 
C(17)-C(18)-C(19) 108.1(2) C(44)-C(43)-C(42) 120.1(3) 
C(20)-C(19)-N(4) 125.4(2) C(45)-C(44)-C(43) 122.0(3) 
C(20)-C(19)-C(18) 125.3(2) C(44)-C(45)-C(46) 117.9(3) 
N(4)-C(19).C(18) 109.0(2) C(44)-C(45)-C(48) 120.7(3) 
C(19)-C(20)-C(l) 125.3(2) C(46)-C(45)-C(48) 121.4(3) 
C(19)-C(20)-C(42) 116.8(2) C(45)-Cf46)-C(47) 120.6(3) 
C(l)-C(20)-C(42) 117.8(2) C(42)-CC47)-C(46) 121.2(3) 
C(26)-C(21)-C(22) 118.3(3) N(7)-C(49)-N(6) 122.8(2) 
C(26)-C(21)-C(5) 122.0(2) N(7)-C(49)-N(5) 133.2(2) 
C(22)-C(21)-C(5) 119.6(2) N(6)-C(49)-N(5) 104.0(2) 
C(23)-C(22)-C(21) 120.6(3) N(7)-C(49)-Hf 169.9(2) 
C(22)-C(23)-C(24) 121.3(3) N(6)-C(49)-Hf 50.86(12) 
C(25)-C(24)-C(23) 117.8(3) N(5)-C(49)-Hf 53.66(12) 
C(25)-C(24)-C(27) 120.8(3) C(55)-C(50)-C(51) 119.9(2) 
C(23)-C(24)-C(27) 121.4(3) C(55)-C(50)-N(5) 120.1(2) 
C(24)-C(25)-C(26) 121.1(3) C(51)-C(50)-N(5) 120.0(2) 
C(21>C(26)-C(25) 120.8(3) C(52)-C(51)-C(50) 118.6(3) 
C(29>C(28)-C(33) 118.2(2) C(52)-C(51)-C(56) 120.3(2) 
C(29)-C(28)-C(10) 121.3(2) C(50)-C(51)-C(56) 121.0(2) 
C(33)-C(28).C(10) 120.4(2) C(53)-C(52)-C(51) 121.5(3) 
C(28)-C(29)-C(30) 120.9(3) C(52)-C(53)-C(54) 119.7(3) 
C(31>C(30)-C(29) 120.9(3) C(53)-C(54)-C(55) 121.3(3) 
C(32)-C(31)-C(30) 118.4(3) C(54)-C(55)-C(50) 118.6(3) 
C(32)-C(31)-C(34) 121.1(3) C(54)-C(55)-C(59) 117.5(3) 
C(30K(31)-C(34) 120.5(3) C(50)-C(55)-C(59) 123.8(3) 
C(31)-C(32)-C(33) 121.4(3) C(57).C(56)-C(51) 113.0(2) 
C(32)-C(33)-C(28) 120.3(3) C(57)-C(56)-C(58) 109.1(3) 
C(36)-C(35)-C(40) 117.9(3) C(51)-C(56)-C(58) 113.4(3) 
C(36>C(35)-C(15) 119.2(3) C(60)-C(59)-C(55) 114.1(3) 
C(40)-C(35)-C(15) 122.8(3) C(60)-C(59)-C(61) 108.3(3) 
C(37)-C(36>C(35) 121.3(3) C(55)-C(59)-C(61) 111.2(3) 
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Table XV. (continued) 

N(6)-C(62)-C(63) 113.0(2) 
N(6)-C(62)-C(64) 111.4(2) 

C(63)-C(62)-C(64) 112.2(3) 

N(7)-C(65)-C(66) 110.3(3) 
N(7)-C(65)-C(67) 106.7(3) 
C(66)-C(65)-C(67) 110.9(3) 
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CHAPTER 6. NEW CHEMISTRY OF ZIRCONIUM AND HAFNIUM IMIDO 

COMPLEXES: CONDENSATION AND METATHESIS REACTIONS 

A paper to be submitted to Inorganic Chemistry 

Joseph L. Thorman, Ilia A. Guzei, Victor G. Young, Jr.^ and L. Keith Woo* 

Abstract 

The zirconium and hafiiium imido metalloporphyrin complexes, (TTP)M=NAr'^, 

(TTP = OTeso-5,10,15,20-tetra-p-tolylporphyrinato dianion; M = Zr (1), Hf; = 2,6-

diisopropylphenyi) have been utilized as reagents in the preparation of complexes containing 

metal-oxygen bonds. The imido complexes react in a step-wise manner in the presence of 

two equivalents of pinacolone to form the endiolate products 

(TTP)M[0CCBu)CHCCBu)(Me)0] (M = Zr, 2; Hf, 3), with elimination of HjNAr''^. The 

bisOz-oxo) complex [(TTP)Zr0]2, 4, is formed upon reaction of (TTP)Zr=NAr''^ with 

PhNO. Treatment of compound 4 with water or compound 2 with acetone, produced the 

bis(;/-hydroxo)0«-oxo) bridged dimer [(TTP)Zr]2C"-O)0/-OH)2, 5. Compounds 2, 4, and 5 

were structurally characterized by single-crystal X-ray diffraction. 

Introduction 

The preparation of group 4 chalcogenido complexes is an attractive goal in light of 

the demonstrated reactivity of metallocene and tetraazaannulene analogues described in a 
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number of surveys.'*^' Notable examples include C-H bond activation, cycloaddition, and 

enolate formation. Toward this end, we have developed nitrene group and chalcogenido 

atom transfer routes with titanium metalloporphyrin complexes. Efforts to extend this 

methodology to the heavier congeners has now become an area of attention. Kim and 

coworkers have investigated the persulfido- and perselenido-bridged complexes of zirconium 

and hafiiium [(TPP)M]2C«-/f-Ch2)2 complexes. These are the only known dimeric group 4 

metalloporphyrin chalcogenido complexes.^ 

In an ongoing investigation of group 4 metalloporphyrin imido complexes, we have 

found a number of novel reactivity properties.''^' We demonstrated previously that the 

imido complexes, (TTP)M=NAr'^ (M = Zr, Hf), exhibit reactivity with heterocumulenes to 

form [2 + 2] cycloaddition products.* Further reactivity has been explored with other 

unsaturated substrates. Among these, we now describe results found from the reactions of 

the zirconium and hafiiium imido complexes with pinacolone and PhNO. 

Experimental 

General Procedures. All manipulations were performed under a nitrogen 

atmosphere using a Vacuum Atmospheres glovebox equipped with a Model M040-1 Dri-

Train gas purifier. Benzene, benzene-^/^, toluene, THF, and hexane were freshly distilled 

fi'om purple solutions of sodium benzophenone and brought into the drybox without 

exposure to air. Methylene chloride was dried by passage through a column of activated 

neutral alumina. The dichloro, (TTP)MCl2, imido, (TTP)M=NAr'^ (M = Zr, Hf), and 

(TTP)Zr(Ti^-NAr'''C(=NBu)0) compounds were prepared according to literature 
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procedures.* Pinacolone was purchased from Aldrich, vacuum transferred and dried by 

passage through a plug of activated neutral alumina. Pinacolone-^,2 was prepared according 

to a literature procedure.' 'H and "C NMR data were acquired on Varian VXR (300 MHz, 

20"C) or Bruker DRX (400 MHz, 25 °C) spectrometers. Chemical shifts are referenced to 

proton solvent impurities (6 7.15, C^DsH). UV-vis data were recorded on a HP8452A diode 

array spectrophotometer and reported as in nm (log e). Elemental analyses (C, H, N) 

were performed by Iowa State Universl;. Instrument Services. GCMS studies were 

performed on a Varian gas chromatograph coupled to an ITS 40 ion trap mass spectrometer 

(capillary column DB-5MS). 

(TTP)Zr(NHAr®*0[OC('Bu)(=CH2)], 2a. This complex is formed within minutes 

from treatment of the imido complex, 1, with one equivalent of pinacolone in toluene or 

benzene. Although complex 2a is stable in its mother liquor for days at ambient temperature 

and at 80 °C, it could not be isolated in an analytically pure form. ^H NMR (QD^, 400 

MHz): 9.18 (s, 8H, yff-H), 8.55 (d, 4H, %.a = 7 Hz, meso-CJf^Oii), 7.85 (d, 4H, = 7 

Hz, meso-Cfi^CHj), 7.33 (d, 4H, ^JH.H = 8 Hz, meso-C^^CK^), 7.23 (d, 4H, VH = 8 Hz, 

meso-CefitCHj), 6.22 (m, 3H, 3.02 (s, IH, 0C(=C//2)'Bu), 2.40 (s, 12H, 

meso-CeH^Cffj), 1.35 (s, IH, 0C(=C/f2)'Bu), 0.96 (s, IH, N/fAr^O, 0.46 (d, 6H, 2,6-('Pr)2-

C6H4), 0.32 (d, 6H, 2,6-('Pr)2-C6H4), -0.22 (m, 2H, NHAr'^, -0.50 (s, 9H, 0C(=CH2)'BM). 

"CNMR(C6Dfi); 170.7 (0C(=CH2)'Bu), 150.6, 148.6, 139.8, 137.1, 135.2 (o-tolyl), 134.2 

(o-tolyl), 132.5 05-pyrrole), 128.5 (/n-tolyl), 125.6, 125.4, 121.2 (w,/7-Ar ,̂ 119.7 (m.p-

Ar^O, 83.3 (0C(=CH2)'Bu). 34.1, 29.0 (CH(Me)2), 27.3 (OC(=CH2)(C(CH3)3), 24.6 

(CH(A/e)2), 22.0 (CHCMe)^), 21.4 (CHa-tolyl). 
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(TTP)Zrl0CCBu)CHCCBu)(Me)01, 2. A solution of (TTP)Zr=NAr'^ (237 mg, 

0.253 mmot) and pinacolone (200 ^L, 1.60 nunol) in benzene (ca. 15 mL) was stirred at 

25 °C for 40 h. This dark blue solution was filtered and the filtrate solution evaporated to 

dryness in vacuo to yield blue 2 (204 mg, 84 % yield). UV/vis (toluene): 548 (4.55), 425 

(5.66), 405 (shoulder, 3.23). 'HNMR (C^Dfi, 300MHz): 9.21 (m, 8H, /?-H), 8.47 (d, 4H, 

'JH.H = 7 HZ, meso-C^JCtiil 7.93 (d, 4H, %.„ = 7 Hz, meso-C^^CHi), 7.36 (d, 4H, 

= 8 Hz, meso-C^S^Hj), 7.25 (d, 4H, = 8 Hz, meso-C^^CH^), 3.00 (s, IH, 

0C('Bu)C/fC('Bu)(Me)0), 2.40 (s, 12H, meso-CiH^CH^), 0.04 (s, 9H, 

0C('5M)CHC('Bu)(Me)0), -0.46 (s, 9H, 0C('Bu)CHC('5i/)(Me)0), -0.69 (s, 3H, 

0CCBu)CHC('Bu)(A/e)0. '^CNMR(CfiD6): 159.5 (OC(=CH)('Bu)), 150.4 (a-pyrrole), 

150.1 (a-pyrrole), 140.0, 137.4, 135.2 (o-tolyl), 134.5 (o-tolyl), 132.61 (^pyrrole), 132.56 

(/^-pyrrole), 127.9 (m-tolyl, obscured by solvent), 127.8 (m-tolyl, obscured by solvent), 

124.7, 97.6 (OC(=CH)('Bu)), 80.0 (OC(Me)('Bu)), 37.2, 34.8, 27.4 (0C(=CH)CA/E3), 24.3 

(0C(Me)CA/e3), 23.7 (OC(A/e)('Bu)), 21.4 (CHj-tolyl). Anal. Calcd. (Found) for 

CfioHjgN^OzZr: C, 75.20 (75.35); H, 6.10 (6.19); N, 5.85 (5.59). 

(TTP)Hf(NHAi^[OC('Bu)(=CH2)l, 3a. The formation of complex 3a was 

observed in a NMR tube experiment. An NMR tube equipped with a teflon stopcock was 

charged with (TTP)H^NAr'^ (11.7 mg, 11.5 ^mol), PhjCH (91.0 ^iL, 0.1439 M in QD«, 

13.0 ^mol), pinacolone (6.7 jiL, 53.6 ^mol) and CgDs (ca. 0.6 mL). Complex 3a (11.5 

jimol, 100% NMR yield) was formed after 17 h at 25 °C. Complex 3 (11.4 ^mol, 99 % 

NMR yield) is formed after heating this solution for 25 h at 85 °C. 'H NMR (C^Dg, 400 

MHz): 9.20 (s, 8H, /?-H), 8.55 (d, 4H, %.a = 7 Hz, meso-C^^CH^), 7.85 (d, 4H, = 7 
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Hz, meso-C^H^CH^X 7.33 (d, 4H, = 8 HZ, meso-CsH^CH,), 7.23 (d, 4H, = 8 HZ, 

meso-C^^CH^), 6.22 (M, 3H, m-, p-NHAi'^, 2.91 (s, IH, 0C(=C/F2)'BU), 2.40 (s, 12H, 

MESO-C^4,CH^), 1.18 (s, IH, 0C(=C//2)®"). 0-88 (s, obscured by pinacolone), 

0.48 (d. 6H, 2,6-(CH(C/F3)2)2-C«H4), 0.31 (d, 6H, 2.6-(CH(Ci/,)3)J-C6HJ, -0.17 (m, 2H, 

2,6-(C/F(CH3)2)2-CFIH«), -0.50 (s, 9H, 0C(=CH2)'FIU). 

(TTP)HflOC(TBu)CHC('Bu)(Me)01,3. A solution of (TTP)Hf=NAi''' (128 mg, 

0.125 mmol) and pinacolone (90 nL, 0.72 mmol) in toluene (ca. 10 mL) was stirred at 25 °C 

for 140 h. The reaction had not reached completion at this time and was subsequently 

heated for 26 h at 80 °C. This dark blue solution was filtered and the filtrate solution 

evaporated to dryness in vacuo and recrystallized fi-om a toluene solution layered with 

hexanes at -25 °C overnight to yield blue 3 (79 mg, 61 % yield). 'H NMR (CgDg, 300MHz): 

9.23 (m, 8H, fi-H), 8.47 (d, 4H, = 7 Hz, meso-CJI.CH^), 7.91 (d, 4H, = 7 Hz, 

meso-C^tCHj), 7.35 (d, 4H, VH = 8 Hz, meso-C^^CH^), 7.24 (d, 4H, = 8 Hz, 

meso-CeH^CH^l 2.92 (s, IH, 0C('Bu)C/rC('Bu)(Me)0), 2.40 (s, 12H, meso-C^^CH^), 

0.04 (s, 9H, 0C('5M)CHC('Bu)(Me)0), -0.43 (s, 9H, 0C('Bu)CHC('5w)(Me)0), -0.72 (s, 

3H, 0CCBu)CHC('Bu)(A/e)0. 

((TTP)Zr01j, 4. A solution of (TTP)Zr=NAr'^ (214 mg, 0.228 mmol) and PhNO 

(28.2 mg, 0.263 mmol) in toluene (ca. 15 mL) was stirred at 25''C for 1.5 h. This dark blue 

solution was filtered and the filtrate solution evaporated to dryness in vacuo to yield blue 4 

(99 mg, 56 % yield). UV/vis (toluene): 548 (4.38), 511 (4.51), 473 (4.40), 420 (5.56). 364 

(4.41). ^HNMR (CDClj, 300MHz): 8.44 (s, 8H, ^H), 7.58 (m, 8H, meso-C^^CH^), 7.40 

(m, 8H, meso-Cfff^CU^X 2.71 (s, 12H, meso-Cfi^CH^). NMR (CDCI3); 148.0, 139.3, 
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136.8, 135.7 (OTESO-C«H4CH3), N2.9 {MESO-C^^CR^), 130.6 (/^-pyrrole), 127.0 (WESO-

C6H4CH3), 122.5, 21.5 (OTWO-QH^CHS). GCMS (Ar"*TSr=NPh) Calcd(found); 266.39(266) 

m/z. Anal. Calcd. (Found) for C,6H„N,02Zr2: C, 74 29 (74.38); H, 4.68 (5.29); N, 7.22 

(6.60). 

[(TTP)Zrlj(/i-0)(^-0H)j,5 .  A solution of 2 (129 mg, 0.135 nimol) and acetone 

(150 ^L, 2.04 mmol) in toluene (ca. 10 mL) was refluxed for 36 h. This dark blue solution 

was filtered and the solid washed with toluene (3x2 mL) to yield blue 5 (92 mg, 43 % 

yield). UV/vis (CH^Cy: 541 (4.64), 416 (5.75). 'H NMR (CDCI3. 300MHz): 8.41 (s, 16H, 

/?^H), 7.62 (bd, meso-CffiJCa;), 7.46 (bd, meso-CJHJZHi), 7.41 (bd, meso-C^JCR;), 2.71 

(s, 24H, meso-C^JCH^\ -Z21 (s, 2H, [i-OH). "C NMR (CDCI3): 148.1, 139.2, 136.8, 

130.4 (/^.pyrrole), 129.0 {meso-C^jCR^), 128.2, 127.0, 125.3, 21.5 {meso-C^jCH^). 

Anal. Calcd. (Found) for C^H74Ng03Zr2: C, 73.44 (73.99); H, 4.75 (4.91); N, 7.14 (6.48). 

Reaction of complex 2a with p-toluidine. Complex 2a was generated in situ in a 

NMR tube equipped with a teflon stopcock. Within minutes of adding approximately 6 eq 

of HjNtolyl all NHAr''^ in 2a had been replaced by NHtolyl to form 

(TTP)Zr(NHtolyl)(OC('Bu)(=CH2)), 2b. 'H NMR (CfiD«, 300 MHz): 9.14 (s, 8H, /?-H), 

8.46 (d, 4H, meso-C^JZYly), 7.85 (d, 4H, meso-CS*CR^\ 7.35 (d, 4H, meso-CfPJCti;), 

7.22 (d, 4H, meso-C^JCa^, 6.29 (d, /n-tolyl, obscured by HjNtolyl), 4.20 (d, 2H, o-tolyl), 

3.00 (s, IH, 0C(=C^2)'BU), 2.39 (s, 12H, meso-C^JZH^\ 1.87 (s, 6H,p-MeC^Yi^), 

(0C(=C^2)'Bu ®nd N^Ar^' signals not observed, obscured by pinacolone and HjNAr'^, -

0.26 (s, 9H, 0C(=CH2)!Su). Addition of 2 eq of pinacolone lead to the formation of 

complex 2 within 15 minutes. 
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Reaction of complex 2a with 2-octanone. A NMR tube equipped with a teflon 

stopcock was charged with (TTP)Zr=NAr'** (15.6 mg, 16.7 ^mol), PhjCH (93.0 ^L, 0.1397 

M in C^Dg, 13.0 ^mol), pinacolone (2.3 ^L, 18.4 ^mol) and QDg (ca. 0.6 mL). Allowing 

the tiibe to stand at 20 °C for 16 h afforded 2a in quantitative yield at which time 2-

octanone (7.0 fiL, 44.7 (imol) was added. Allowing this reaction mixture to stand at 20 °C 

for 23 h afforded (TTP)Zr(0C('Bu)CHC(hexyl)(Me)0) (15.0 ^mol, 90 % NMR yield). 

Complex 2 was not observed at any time during this reaction. Treatment of the final 

reaction mixture with water produced the enone as one of the many decomposition products. 

'H NMR (CfiDfi, 300MHz); 9.21 (s, 8H, 8.41 (d, 4H, ^JH.H = 7 HZ, MESO-CJIJCR^X 

7.91 (d, 4H, \.H = 7 Hz, meso-Cfi^CRy), 7.37 (d, 4H, ^JH.H = 8 HZ, meso-C^S^Yi^X 7.24 

(d, 4H, VH = 8 HZ, meso-C^H^CK^X 2.84 (s, IH, 0C('Bu)Ci/C(hexyl)(Me)0), 2.40 (s, 

12H, meso-C^^CH3), 1.2-0.6 (m, 0CCBu)Ci/C(/ie;^/)(Me)0, obscured by H,NA^'^ 

pinacolone, and 2-octanone), 0.05 (s, 9H, 0C('5i/)CHC(hexyl)(Me)0), -0.29 (m, 2H, 

0C('Bu)CHC(C/f2(CH2)4CH3)(Me)0), -0.72 (s, 3H, 0C('Bu)CHC(hexyl)(A/e)0. GCMS 

(2,2,5-trimethyl-4-undecen-3-one, C14H26O): Calcd. (found): [M'] 210.36(211) m/z. 

Reaction of (TTP)Zr(i7^-NAr®^C(=N'Bu)0) with pinacolone. A NMR tube 

equipped with a teflon stopcock was charged with (TTP)Zr(7^-NAr'^C(=N'Bu)0) (13.1 mg, 

12.68 ^mol), PhjCH (91.5 fiL, 0.1455 M in C^Dj, 13.3 ^mol), pinacolone (7.0 jiL, 56.0 

^mol) and (ca. 0.6 mL). Allowing the tube to stand at 20 °C for 15 h afforded 2 (11.5 

nmol, 90 % NMR yield) and Ar'^^C(0)NH'Bu (9.2 jimol, 72 % NMR yield). (JCMS 

CnHjjNjO: Calcd. (found): [M^] 276.42 (277) m/z. 'HNMR (CA. 300 MHz): 7.16 (m, p-

C^3, obscured by HjNAr'^, 7.08 (d, 2H, obscured by HzNAr"^, 4.02 (s, IH, 



www.manaraa.com

179 

N//), 3.57 (m, 2H, -CZ/Mcj), 1.23 (d, 12H, -CUMe^, 1.18 (s, 9H, N-CA/e,). 

Structure Determinations of (TTP)Zr[0C('Bu)CHC('Bu)(Me)0] (2), 

[(TTPyZrOlx (4), and [(TTP)Zr]2(/<-O)0£-OH)2 (5). Crystal data is found in Appendix A. 

Compound 5 was treated by attachment to a glass fiber and mounting on a Siemens SMART 

system for data collection at 173(2) K. An initial set of cell constants was calculated from 

reflections harvested from three sets of 20 frames. These initial sets of frames were oriented 

such that orthogonal wedges of reciprocal space were surveyed. This produced orientation 

matrices determined from 154 reflections for compound 5. Final cell constants were 

calculated from a set of 4170 strong reflections from the actual data collection. Three major 

swaths of frames were collected with 0.30° steps in co. The space group was determined on 

the basis of systematic absences and intensity statistics, and a successful direct-methods 

solution was calculated which provided most non-hydrogen atoms from the E-map. Several 

full-matrix least squares/difference Fourier cycles were performed which located the 

remainder of non-hydrogen atoms, which were refined with anisotropic displacement 

parameters. Atom 01 is located on the crystallographic two-fold axis. Its longer metal 

bond lengths suggest it is a hydroxide. Its proton is assumed to be in sp^ geometry and 

disordered over the two possible, partially occupied sites. The other two oxygens, bridging 

hydroxide (03) and oxo (02), were equally disordered over the crystallographic two-fold 

axis and were refined with restrained metal-oxygen distances. All hydrogen atoms were 

placed in ideal positions and refined as riding atoms with relative isotropic displacement 

parameters. There were 1.5 solvent molecules of benzene per asymmetric unit. SHLEXTL 

DELU and SAME restraints were employed here to keep reasonable C-C distances and 
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approxiinate rigid-body anisotropic displacement parameters. There were 48 restraints used 

altogether. Three bad reflections were omitted from the final least-squares refinement. All 

calculations were performed using SGI 1NDY R4400-SC or Pentium computers using the 

SHELXTL V5.0 program suite.'" 

Crystals of 2 and 4 were treated in an analogous manner to that of 5. Systematic 

absences in the difi&action data were uniquely consistent for space groups denoted in 

Appendbc A. The structures were solved using direct methods, completed by subsequent 

difference Fourier synthesis and refined by full-matrix least-squares procedures. For 

complex 2, all porphyrin non-hydrogen atoms and zirconium were refined with anisotropic 

displacement coefiBcients. All other non-hydrogens were refined isotropically. The 

enediolate ligand exhibited high thermal activity and was refined with an idealized geometry. 

The crystal was refined as a twin with a 52:48 ratio contribution from the two components. 

There were three severely disordered solvent molecules also present in the asymmetric unit, 

which were identified and refined as a hexane, toluene, and a half of a toluene molecule 

using the SQUEEZE option in the PLATON" program. PLATON calculated the upper 

limit of volume that can be occupied by the solvent to be 2028.3 or 30.8 % of the unit 

volume. The program calculated 512 electrons, four hexane and six toluene molecules, in 

the unit cell for the difilise species. Similar treatment was addressed to two severely 

disordered toluene molecules that were identified and refined in the asymmetric unit of 

complex 4. PLATON calculated the upper limit of volume that can be occupied by the 

solvent to be 2016.5 or 22.5 % of the unit volume. The program calculated 812 

electrons, eight toluene molecules, in the unit cell for the difilise species. Note that all 



www.manaraa.com

181 

derived data in the following tables are based on known contents. No data is given for the 

diffusely scattering solvent molecules. Crystallographic data in CIF format are deposited at 

the Cambridge Crystallographic Data Center. 

Results 

Pinacolone coupling from (TTP)Zr=NAr^, 1. Upon treatment of 

(TTP)Zr=NAr''*', 1, with one equivalent of pinacolone a new species is observed within 5 

minutes. Product analysis was achieved by 'H NMR spectroscopy.'^ The observation of a 

3-proton multiplet at 6.22 ppm, due to the meta- and para-Ai'^ protons, indicate that the 

NAr'^ moiety has been retained in the product. This chemical shift is close to the upfield 

signals found for the corresponding aryl protons of the imido complex, 1, at 6.08 ppm. 

Additionally, the new Ar'^*' isopropyl proton chemical shifts, 0.46 (d, 6H), 0.32 (d, 6H), 

-0.23 (m, 2H) ppm, remain significantly upfield of the fi'ee amine [2.63 (spt, 2H), 1.14 (d, 

12H)] and only slightly downfield fi"om those found in complex 1 [0.18 (m, 2H), 0.00 (d, 

12H)]. The N-^ amido proton is observed at 0.95 ppm, similar to the chemical shifts 

reported for (TTP)Hf(lS[«Ph)(N^Ar''0.' Signals at 3.02 (s, IH), 1.35 (s, IH), and -0.50 (s, 

9H) ppm signify the presence of a single bound pinacolone firagment. The large variation in 

chemical shifts for the two geminal protons is unusual, but must arise due to differences in 

position relative to the porphyrin ring current. 

Three possible limiting isomers for this product consistent with the 'H NMR data, 

are shown in Figure 1. Distinctive '^C NMR resonances attributed to the bound pinacolone 

fragment, but not due to the /-butyl group, are found at 170.7 and 83.3 ppm. A HETCOR 
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Figure 1. Possible isomers from condensation reaction between 1 and pinacolone. 

experiment revealed that the protons resonating at 3.02 and 1.3S ppm are both bound to the 

same carbon atom (83.3 ppm), precluding isomer I. The proton resonating at 3.02 ppm 

displays a through-space interaction with the /-butyl group (-0.50 ppm) in a NOESY 

experiment. Consequently, this proton must be cisoid to the /-butyl group. The "C NMR is 

incompatible with isomer n as the peak at 83.3 ppm is too far downfield for a C-bound 

enolate." A metallocene enolate complex, Cp2*Zr(OH)[r|'-OC(=CH2)(BuO], possesses 

similar "C NMR chemical shifts, 84.1 [0C(Bu')=CH2] and 172.8 ppm [OC(=CH2)(Bu')]. 

The NMR data for the condensation product is most consistent with an 0-bound enolate, 

isomer HI. The enolato complex, (TTP)Zr(NHAr'^[0C(=CH2)('Bu)], 2a, could not be 

isolated in pure form due to decomposition to intractable products during purification 

attempts. 

Treatment of complex 2a with one equivalent of pinacolone resuhs in the elimination 

of HjNAr'^ and formation of a metalloporphyrin product containing two pinacolone 

fragments. The 'H NMR integrations of the double condensation product are consistent 

with the overall loss of 2 hydrogens from the two pinacolone molecules. A singlet at 3.00 

ppm is assigned to an olefinic proton that has been shifted upfield by the porphryin ring 
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current. The two "Bu groups are observed as singlets at 0.04 (9H) and -0.46 (9H) ppm and 

the renuiining methyl singlet appears at -0.69 (3H) ppm. Upon cooling a toluene-^/, solution 

of complex 2, broadening of the /-butyl singlet at -0.46 ppm is observed in the 'H NMR. At 

234 K this singlet has nearly broadened into the baseline while the geminal methyl signal 

(-0.69 ppm) remains sharp.'^ An unusual feature of complex 2 is the /^pyrrole proton 

resonance. This signal appears as an AB quartet (9.21 ppm, = 4.6 Hz, 5v = 4.8 Hz) 

due to the stereogenic center in the endiolate ligand. Two isomers are consistent with the 1-

D ^H NMR data for the two coupled pinacolone molecules (Figure 2). 

Figure 2. Possible isomers of coupled pinacolone derivatives consistent with 'H NMR. 

The position of the olefinic proton was established by a NOESY experiment which 

shows through-space interactions of this hydrogen to both r-butyl groups and to the methyl 

group. Furthermore, the methyl group which resonates at -0.69 ppm is also close, spatially, 

to the /-butyl unit with the signal at -0.46 ppm. Isomer IV is consistent with the NOESY 

experiment while isomer V would exhibit a NOE interaction of the olefinic proton with only 

one Qu group. The connectivity of the hydrocarbon backbone is definitively established by a 

HMBC experiment that shows two-bond coupling interactions between the olefinic proton 

IV V 
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and both carbon 3 and carbon S (see Figure 2 for numbering). Isomer V would contain a 

two-bond coupling of the olefinic proton to only one carbon atom. The chemical shifls of 

carbon 3 (160.0 ppm), carbon 4 (97.6 ppm), and carbon 5 (80.0 ppm) of the metallacycle 

backbone were assigned by HETCOR and HMBC NMR experiments. 

In addition to 2-D NMR results, support for the assignment of the two /-butyl groups 

in complex 2 was facilitated by deuterium labeling. Treatment of the imido 1 with I eq of 

pinacolone followed by excess pinacolone-^,; produced complex 2 with a 9-proton singlet in 

the 'H NMR spectrum at 0.04 ppm. Conversely, treatment of 1 with 1 eq of pinacolone-t/j, 

and then with excess proteo-pinacolone produced metallacycle 2 with a 9-proton singlet at 

-0.46 ppm and a 3-proton singlet at -0.69 ppm. These experiments also reveal that the 

source of the protons transferred to the imido group is the methyl group of the first 

pinacolone consumed. Based on the NMR structural analysis, the reaction sequence for 

pinacolone condensation with complex 1 is shown in equations 1-2. 

Complex 2 could also be synthesized by alternate routes. Formation of the 

metallacycle 2 occurs on treatment of the ureato complex, (TTP)Zr(Ti--NAr'^C(=NBu)0), 

with excess pinacolone. The urea, NHAr'^C(=0)NH'Bu, is a by-product of this process. 

Treatment of (TTP)ZrCl2 with excess pinacolone in the presence of piperidine also results in 

the formation of complex 2. Although this is a more direct synthetic approach, it yields 

impure product. A one-pot synthesis which involves adding excess pinacolone to in situ 

generated 1, produced complex 2 in comparable yield and purity to that found for the 

reaction with isolated imido complex 1. Whereas the formation of complex 2 firom enolate 

species 2a requires hours to reach completion, treatment of complex 2b with pinacolone 
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results in the rapid formation of the endiolate. 

The preceding investigation also employed haihium in place of zirconium, but due to 

similar characteristics only the latter was addressed. The largest discrepancy in the NMR 

of the amido/enolato congeners was found for the methylene resonances. Those for 3a 

(2.91, 1.18 ppm) are slightly upfield of those in 2a (3.02, 1.3S ppm). Similarly, the olefinic 

resonance in the endiolate complex is upfield for the haihium derivative (2.92 ppm) relative 

to that for the zirconium complex (3.00 ppm). Reaction times were observed to be 

somewhat longer for Hf as observed previously in other chemistry of Hf and Zr 

metalloporphyrin complexes.' Under identical reaction conditions treatment of the 

respective imido, (TTP)M=NAr'^ (M = Zr, Hf), with excess pinacolone produced the 

amide/enolate complex within minutes for zirconium and 1 h for hafiiium. 

Formation of oxygen bridged dimers 4 and 5. The bis(;/-oxo) complex, 

[(TTP)ZrO]2,4, was initially observed in the thermal decomposition of the N,0-bound 
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ureato complexes, (TTP)Zr(TI^-NAr^C(=lsrBu)0) and (TTP)Zr(TI^-N'BuC(=NAr^).«-" A 

more facile route to complex 4 was found from the metathesis reaction between complex 1 

and PhNO (eq 3). The dimer was formed in moderate yield along with the diazene, 

PhN=NAr''*'. The 'H NMR spectrum of the bis(^-oxo) species exhibits signals typical of 

ArN 

.< i + 2 PhNO O O + 2PhN=NAr (3) 

zirconium metalloporphyrin complexes. The exception is an upfield shift of the /^pyrrole 

signal to 8.44 ppm due to the face-to-face orientation of the two porphyrin rings. The fi-

pyrrole signal remains as a singlet at 223 K in CDClj, indicating fast rotation of the 

porphyrin rings relative to one another. Complex 4 readily undergoes hydrolysis upon 

exposure to water to produce the 0/-oxo)bis(//-hydroxo) dimer, complex 5 (eq 4). 

+ H,0 H-0 0^0-H (4) 

The most facile preparation of compound 5 was found from heating a toluene solution of 2 

in the presence of excess acetone. The hydroxyl protons at -8.27 ppm (s, 2H) were found to 

be upfield from those reported for the tetraphenylporphyrin analogue (-6.73 ppm, s, 2H).'® 
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CrysUl structures of (TTP)Zr(0CCBu)CHC('Bu)(Me)0) (2), ((TTP)Zr01, (4), 

and [(TTP)Zr]2(/<-0)(^-0H)2 (S). The crystallographic data for complexes 2, 4, and 5 are 

presented in Appendix A and selected metrical parameters are collected in Tables 1-2. All of 

the molecules exhibit typical out-of-plane distance of the zirconium from the mean 4-Npj^ 

plane for six- and seven-coordinate metals. In the case of complex 2, acquisition of high 

quality crystals was not possible despite numerous recrystallizations. We attribute these 

difficulties to the solvent dependent nature of the crystals and volatile solvent molecules 

packed in the voids of the lattice. While extensive disorder in the enediolate ligand 

precluded anisotropic refinement of the carbon backbone, the oxygen atom identities were 

unequivocally established and are consistent with the results of spectroscopic experiments. 

A representation of complex 2 is given in Figure 3. The Zr-0 bond distances of 1.963(6) 

[Zr-01] and 1.945(7) A [Zr-02] compare well with those in alkoxido compounds," but are 

considerably shorter than the single bonds observed in the four-atom metallacycles 

(TTP)Zr(7^-NAr'^C(=NBu)0) [2.0677(12) A] and (TTP)Zr(;/2-N'BuC(=NAr'^0) 

[2.066(3) A].' Atom 01 eclipses the Zr-N2 bond within 2.0° while atom 02 is staggered in 

relation to the Zr-N3 and Zr-N4 bonds by 62.5° and 26.5°, respectively. The Zr-N2 

[2.290(10) A] and Zr-N4 [2.295(9) A] bonds are long compared to Zr-N3 [2.177(9) A] and 

Zr-N4 [2.295(9) A] distances. These differences are likely due to contributions from 

nitrogen-oxygen repulsions [N2-01: 2.717(2) A; N4-02: 2.721(2) A]." 

Compound 4 (Figure 4) results from the formal dimerization of two (TTP)Zr=0 

units. The metal-oxygen bond distances, 1.9719(16) and 1.9791(16)A [Zrl-01 and Zrl-

02], are elongated compared to known oxo-bridged analogues but still suggest the presence 
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Table 1. Selected bond distances Zr-E (A) of complexes 2, 4, 5. 

Complex 

Zr-N^ plane 

Zr-Ol 1.963(6) 
Zr-02 1.945(7) 

Zr-Nl 2.254(8) 
Zr-N2 2.290(10) 
Zr-N3 2.177(9) 
Zr-N4 2.295(9) 

0.98 

Zrl-Ol 1.9719(16) 
Zrl-02 1.9791(16) 

Zrl-Nl 2.246(2) 
Zrl-N2 2.280(2) 
Zrl-N3 2.241(2) 
Zrl-N4 2.280(2) 

0.97 

Zrl-Ol 2.166(3) 
Zrl-02 1.988(4) 
Zrl-03 2.171(5) 
Zrl-Nl 2.291(3) 
Zrl-N2 2.279(3) 
Zrl-N3 2.266(3) 
Zrl-N4 2.286(3) 

1.04 

Table 2. Seleaed bond angles (°) of complexes 2, 4, 5. 

Complex 

Ol-Zr-02 76.9(3) Ol-Zrl-02 78.56(8) 

Nl-Zr-N3 131.97(18) Nl-Zrl-N3 130.35(8) 
N2-Zr-N4 124.85(19) N2-Zrl-N4 127.86(7) 

Ol-Zrl-02 76.1(2) 
01-Zrl-03 66.6(2) 
02-Zrl-03 74.0(2) 

Zr-O-Zr 101.64(12) av. Zr-OI-Zr 89.91(14) 
Zr-02-Zr 100.6(3) 
Zr-03-Zr 89.7(2) 
Nl-Zrl-N3 125.83(11) 
N2-Zrl-N4 125.60(11) 

of multiple bonding.'' The oxygen atoms in complex 4 are staggered with respect to the Zr-

Npymie bonds. The 02-Zrl-Zrl A-N4 A torsion angle is 33.8° and that of 02-Zrl-Zrl A-N3A 

is 57.3 °. The positions of the bridging oxygen atoms lying closer to the N2 and N4 atoms 

may explain the variation in the Zr-N^y^ bond distances resulting from 0-N interactions. 

The Zrl-Zrl A (3.0584(5) A) and the 0-0 distances (2.5014 A) are similar to previously 

described bridging zirconium porphyrin complexes.'®*"'' Three common distortions from 

planarity of the porphyrin macrocycle are observed in complex 4.-° The doming effect is 
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Figure 3. Ball and stick representation of complex 2, (TTP)Zr[0C('Bu)CHC('Bu)(Me)0]. 
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Figure 4. Molecular stucture of [(TTP)ZrO]2 (4). Thermal ellipsoids are drawn at the 30% probability level. 
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readily perceived in the deviations of the four pyrrole nitrogens from the 24-atom porphyrin 

plane [11 (Nl), 7 (N2), 17 (N3), and 9 (N4) pm]. The meso carbon atoms alternate above 

and below the mean 24-atom plane [15 (C5), -12 (CIO), 16 (C15), and -12 (C20) pm] in a 

rufiQing deformation. Although the saddling of the porphyrin ring is perturbed by the 

presence of the other two distortions, it is observed in the /^-pyrrole atoms [-24 (C2), -15 

(C3), 10 (C7), 1 (C8), -29 (C12), -19 (C13), 8 (C17), 2 (C18) pm]. 

The samples of [(TTP)Zr]2C«-O)0/-OH)2, 5, produced in this work are closely 

related to the previously described phenyl derivatives [(TPP)Zr(y/-0H)j2'®* and 

[(TPP)Zr]2C"-0)Cw-0H)2'®'. However, the OH proton resonance in complex 5 (-8.27 ppm) 

was significantly shifted from those of the tetrahydroxy (-6.79 ppm) and the tetraphenyl 

porphyrin dihydroxy analogue (-6.73 ppm). Consequently, compound 5 was subjected to a 

single-crystal X-ray dififr'^rtion study. The zirconium coordination environment and metrical 

parameters are unremarkable from that previously described by Kim and co-workers for 

[(TPP)Zr]2Ca-0)Cu-0H)2. However, the presence of staggered porphyrin rings in complex S 

(Figure 5) is of marked contrast to the other structurally characterized oxygen bridged Zr 

and Hf metalloporphyrin species.'^ The most acute torsion angle present in complex 5 

concerning Zr-Np^^ bond overlap is 22.2° [N3-Zrl-Zrl A-N2A], whereas the 

corresponding angle in the TP? species is only 7.8°. The distance between the two 20-

carbon atom mean planes of the twenty carbon atoms of the porphyrins is equivalent for 

complexes 4 and 5 [5.3(2) A]. 
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Figure S. Top view of complex 5, [(TTP)Zr]2(//-0)(^-0H)2. Thermal ellipsoids are drawn at the 50% probability level. 
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Discussion 

Coupling of pinacolone by (TTP)Zr=NAi^. The basicity of the nitrene group in 

terminal zirconium imido complexes has been documented in a number of studies. A 

comparable reaction of a Zr=X moiety abstracting a proton from a ketone occurs with 

Cp2*Zr(=0)(py) and acetophenone, producing the hydroxo/enolato derivative."' An 

amido/O-bound enolato species, 2a, was found upon treatment of the imido complex, 1, 

with one equivalent of pinacolone. This enolate complex, 2a, was inert in the presence of 

PhCsCH, acetophenone, TMSCl, or Mel at 80°C in CgDs. The zirconium coordination 

sphere in 2a appears to be sterically congested as indicated by two observations. The ortho 

isopropyl groups of the NAr'^ moiety are diastereotopic as a result of hindered rotation 

around the N-Cip„ bond. Secondly, the bulky HjNAr'^ group is readily ejected on treatment 

with HjNtolyl to form (TTP)Zr(NHtolyl)[OC(=CH2)('Bu)], 2b. As expected, the reduced 

steric congestion of the tolyl amido/enolate species facilitates the formation of complex 2 in 

a substantially shorter time period (Scheme 1). 

The formation of complex 2 presumably involves a variation of the generally 

accepted aldol reaction mechanism (Scheme 2).^ Presence of the strong nucleophile, >]HAr, 

causes a deviation from normal aldol condensation to form the unique chelated endiolate 

product.^ 

Intractable mixtures were obtained from the addition of acetone to 1 or 2a. 

However, the reaction between (TTP)Zr(NHAr'^[0C(=CH2)('Bu)] 2a and 2-octanone 

resulted in a new enediolate complex, (TTP)Zr[0C('Bu)CHC(hexyl)(Me)0]. Thus, this 

synthetic methodology may be extended to other a-ketones. 
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Scheme 2. 

Complexes 4 and 5. An atom transfer route for the preparation of terminal 0x0 

species for titanium porphyrin complexes was extended to Zr for the production of complex 

4.^* Thus, the metathesis reaction between (TTP)Zr=NAr'^ and nitrosobenzene cleanly 

produced the ^u-oxo dimer, 4. The postulated transient monomeric 0x0 species, (TTP)Zr=0, 

could not be trapped in the presence of THF or pyridine. Compound 4 is unreactive towards 
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"BuNCO, ketones, amines, and alcohols. This lack of reactivity appears to be based, in part, 

on steric factors since compound 4 is quickly hydrolyzed to compound 5. Further reactivity 

of complex 5 was not observed in the presence of phenol, /-butyl amine, aniline, or ZnEtj. A 

comparison of the structurally characterized oxygen bridged complexes [(TPP)Hf]20/-

[(TPP)Zr]2(A/-0H)2(^-0),'®' and {[(OEP)Zr]20/-OH)3}(7,8-C2B,H,2)'®' shows 

near eclipsing of a M-0 bond with a M-N bond and the presence of eclipsed porphyrin rings. 

This has been attributed to pic-/d7c-orbitaI interaction between the oxygen and the metal. 

Complex 5 does not possess eclipsed porphyrin rings. As the intramolecular steric 

properties of the tetraphenylporphyrin are expected to be equivalent to that of 

tetratolylporphyrin, dic-pit interactions between the Zr and the 0 and N atoms are not 

readily apparent." 

It is interesting to note the structure of the only other known six-coordinate 

zirconium metalloporphyrin complex containing two 0-bound ligands, (0EP)Zr(0'Bu)2."® 

First, the O-Zr-0 angle of 90.08(9)° is rather large for this class of molecules.^® Secondly, 

the zirconium atom lies remarkably far above the porphyrin plane (1.06 A), which is in fact 

the furthest out of plane distance reported for six-coordinate zirconium metalloporphyrin 

complexes. Although these features were attributed primarily to the steric bulk of the O'Bu 

ligands, Zr-O ic-bonding would most likely be enhanced by such an arrangement.^^ 

Zirconium lies further into the porphyrin plane and contains a Ol-Zrl-02 angle of 78.56(8)° 

in complex 4. The presence of dTC-pu interactions are expected in complex 4 albeit 

somewhat diminished as evident in the relatively long Zr-O bonds, the acute O-Zr-0 angle, 

and the staggered M-O/M-N bonds. 
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Conclusion 

New examples of the novel reactivity possessed by zirconium and hafnium imido 

metalloporphyrin complexes have been demonstrated. These complexes mediate the 

stepwise coupling of pinacolone in the formation of an endiolate compound. Mixed ketone 

condensation products are also possible. Moreover, we have developed direct synthetic 

routes to zirconium metalloporphyrin complexes containing bridging oxygen ligands. 

(TTP)Zr=NAr'^ undergoes metathesis with nitrosobenzene to produce the ^i-oxo bridged 

dimer, [(TTP)ZrO]2, 4. The bisCu-hydroxo)C"-oxo) dimer, [(TTP)Zr]2C«-0H)2(n-0), 5, is a 

hydrolysis product of complex 4. Also of interest is the unique structural characteristic of 

staggered porphyrin rings found for complexes 4 and 5. This is in marked contrast to the 

eclipsed conformers known for other Zr and Hf analogues. 
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APPENDIX A 

Table I. Crystal data and structure refinement for complex 2, 
(TTP)Zr[0C('Bu)CHC('Bu)(Me)0]. 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume 

Z 
Density (calculated) 
Absorption coefiBcient 
F(000) 
Crystal size 
Theta range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Completeness to 0 = 21.97° 
Absorption correction 
Max. and min. transmission 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on 
Final R indices [I>2o(I)] 
R indices (all data) 
Largest diff. peak and hole 

a = 90° 
p = 112.624(1)° 
Y = 90°. 

C76.SoH»4N402Zr 
1182.70 
173(2)K 
0.71073 A 
Monoclinic 
Cc 
a = 21.8318(8) A 
b = 20.7139(8) A 
c= 15.7878(8) A 
6590.2(5) A^ 
4 
1.192 Mg/m^ 
0.215 mm"' 
2508 
0.30 X 0.30 X 0.30 mm^ 
1.41 to 21.97°. 
-22 £ h s 22, 0 ^ k s 21, -16 ^ U 16 
20673 
7601 [R(int) = 0.0337] 
99.9 % 
Empirical with SADABS 
0.9383 and 0.9383 
Full-matrix least-squares on F^ 
7601/233/544 
1.065 
R1 =0.0691, wR2 = 0.1909 
R1 = 0.0828, wR2 = 0.2084 
1.292 and -0.690 e.A*^ 



www.manaraa.com

201 

Table n. Atomic coordinates [x 10 ]̂ and equivalent isotropic displacement parameters 
(A^ 10^) for complex 2. U(eq) is defined as one third of the trace of the orthogonalized Uy 
tensor. 

Atom x y z U(eq) 

Zr 1961(2) 6512(1) 4106(3) 26(1) 

C(l) 1867(6) 6073(5) 5987(8) 25(2) 

C(2) 1410(7) 6147(7) 6421(8) 39(3) 

C(3) 793(7) 6118(7) 5723(8) 41(3) 

C(4) 890(7) 6063(6) 4930(8) 29(3) 

C(5) 388(7) 6007(7) 4039(8) 39(3) 

C(6) 448(7) 5925(7) 3153(8) 36(3) 

C(7) -63(6) 5802(5) 2350(8) 29(3) 

C(8) 216(7) 5795(6) 1694(8) 36(3) 

C(9) 908(6) 5945(5) 2170(8) 25(2) 

C(10) 1340(6) 6015(6) 1733(8) 30(3) 

C(ll) 2009(7) 6108(6) 2184(7) 30(3) 

C(12) 2537(7) 6115(7) 1799(9) 37(3) 

C(13) 3128(7) 6122(6) 2455(8) 38(3) 

C(14) 3048(7) 6073(6) 3352(8) 30(3) 

C(15) 3572(6) 5990(5) 4201(8) 23(2) 

C(16) 3459(6) 5943(5) 4992(8) 20(2) 

C(17) 4000(7) 5784(7) 5924(8) 44(4) 

C(18) 3729(6) 5796(6) 6537(8) 32(3) 

C(19) 3033(7) 5931(6) 6081(8) 35(3) 

C(20) 2552(7) 6024(6) 6484(8) 29(3) 

C(21) -320(6) 5963(6) 4027(8) 33(3) 

C(22) -483(8) 5429(7) 4423(11) 52(3) 

C(23) -1142(8) 5378(7) 4403(13) 78(5) 

C(24) -1595(8) 5876(9) 3950(13) 72(5) 

C(25) -1421(7) 6368(7) 3548(11) 55(4) 

C(26) -760(7) 6414(7) 3576(10) 38(3) 

C(27) -2297(9) 5849(8) 3997(13) 82(5) 

C(28) 1112(6) 6009(6) 732(8) 32(3) 
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C(29) 615(8) 6490(5) 195(9) 31(3) 

C(30) 349(7) 6466(5) -778(9) 32(3) 

C(31) 581(7) 5972(7) -1228(8) 39(3) 

C(32) 1055(6) 5565(6) -705(8) 34(3) 

C(33) 1295(6) 5572(6) 230(8) 36(3) 

C(34) 250(8) 5975(7) -2266(8) 55(4) 

C(35) 4238(7) 5917(7) 4229(7) 40(3) 

C(36) 4431(8) 5454(8) 3799(11) 59(4) 

C(37) 5035(7) 5431(8) 3778(9) 69(4) 

C(38) 5550(7) 5861(8) 4209(11) 59(4) 

C(39) 5352(8) 6359(8) 4639(10) 63(4) 

C(40) 4763(8) 6421(7) 4645(10) 42(3) 

C(41) 6240(9) 5787(11) 4256(16) 122(8) 

C(42) 2868(6) 6015(5) 7542(8) 27(3) 

C(43) 2617(7) 5531(5) 7988(8) 31(3) 

C(44) 2889(7) 5538(6) 8943(8) 36(3) 

C(45) 3346(7) 6013(6) 9421(9) 39(3) 

C(46) 3538(8) 6431(7) 8940(10) 52(4) 

C(47) 3296(8) 6421(6) 8013(10) 43(4) 

C(48) 3585(7) 5987(7) 10465(8) 50(4) 

N(L) 1563(5) 6080(4) 5102(6) 24(2) 

N(2) 1068(5) 5973(5) 3078(7) 31(2) 

N(3) 2374(6) 6075(5) 3189(6) 31(2) 

N(4) 2897(5) 6028(4) 5134(6) 22(2) 

0(1) 1405(4) 7236(3) 3434(5) 56(2) 

0(2) 2582(4) 7230(3) 4400(6) 66(2) 

C(49) 492(12) 7895(8) 2046(8) 216(11) 

C(50) 322(9) 8039(8) 3490(12) 197(10) 

C(51) 830(6) 8910(4) 2917(8) 74(3) 

C(52) 793(3) 8181(3) 3007(5) 41(2) 

C(53) 1414(4) 7870(3) 3662(5) 47(2) 
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Table n. (continued) 

C(54) 1908(4) 8194(4) 4291(5) 54(3) 

C(55) 2502(5) 7808(5) 4870(10) 163(9) 

C(56) 2673(13) 8021(12) 5859(10) 196(10) 

C(57) 3164(4) 8147(5) 4909(7) 107(5) 

C(58) 3180(11) 8005(8) 3972(8) 185(9) 

C(59) 3752(7) 7808(6) 5633(8) 104(4) 

C(60) 3249(8) 8871(5) 5076(9) 106(5) 
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Table HI. Bond lengths [A] and angles [°] for complex 2. 

Zr-0(2) 1.945(7) C(22)-C(23) 1.430(19) 

Zr-O(l) 1.963(6) C(23)-C(24) 1.42(2) 

Zr-N(3) 2.177(9) C(24).C(25) 1.33(2) 

Zr-N(l) 2.254(8) C(24)-C(27) 1.563(18) 

Zr-N(2) 2.290(10) C(25)-C(26) 1.430(17) 

Zr-N(4) 2.295(9) C(28)-C(33) 1.361(14) 

C(l)-N(l) 1.297(14) C(28)-C(29) 1.477(17) 

C(l)-C(20) 1.401(17) C(29)-C(30) 1.420(16) 

C(l)-C(2) 1.419(14) C(30)-C(31) 1.444(16) 

C(2).C(3) 1.375(18) C(31)-C(32) 1.343(17) 

C(3)-C(4) 1.354(14) C(31)-C(34) 1.516(16) 

C(4).N(1) 1.386(14) C(32)-C(33) 1.362(16) 

C(4).C(5) 1.417(17) C(35)-C(36) 1.333(18) 

C(5)-C(6) 1.465(15) C(35)-C(40) 1.503(19) 

C(5)-C(21) 1.543(16) C(36)-C(37) 1.331(18) 

C(6)-C(7) 1.353(17) C(37)-C(38) 1.39(2) 

C(6)-N(2) 1.407(15) C(38)-C(39) 1.39(2) 

C(7)-C(8) 1.388(14) C(38)-C(41) 1.49(2) 

C(8)-C(9) 1.438(17) C(39)-C(40) 1.297(19) 

C(9)-N(2) 1.339(13) C(42)-C(47) 1.266(17) 

C(9)-C(10) 1.375(14) C(42)-C(43) 1.448(14) 

C(10)-C(ll) 1.369(16) C(43)-C(44) 1.392(15) 

C(10)-C(28) 1.464(15) C(44).C(45) 1.397(18) 

C(ll)-N(3) 1.477(14) C(45)-C(46) 1.322(18) 

C(ll)-C(12) 1.496(14) C(45)-C(48) 1.527(15) 

C(12)-C(13) 1.306(17) C(46)-C(47) 1.351(18) 

C(13)-C(14) 1.495(14) 0(1)-C(53) 1.360(2) 

C(14).N(3) 1.392(15) 0(2)-C(55) 1.454(2) 

C(14)-C(15) 1.398(17) C(49)-C(52) 1.523(7) 

C(15)-C(16) 1.367(13) C(50).C(52) 1.524(7) 

C(15>C(35) 1.445(16) C(51).C(52) 1.523(7) 
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C(16)-N(4) 

C(16)-C(17) 

C(17)-C(18) 

C(18)-C(19) 

C(19)-N(4) 

C(19)-C(20) 

C(20)-C(42) 

C(21)-C(26) 

C(21)-C(22) 

1.342(13) 

1.527(16) 

1.314(15) 

1.435(17) 

1.422(13) 

1.434(14) 

1.543(15) 

1.332(18) 

1.382(18) 

C(52)-C(53) 

C(53)-C(54) 

C(54)-C(55) 

C(55)-C(56) 

C(55)-C(57) 

C(57)-C(60) 

C(57)-C(59) 

C(57)-C(58) 

0(2)-Zr-0(l) 76.9(3) C(21)-C(26)-C(25) 

0(2)-Zr-N(3) 92.7(3) C(33)-C(28)-C(10) 

0(1)-Zr-N(3) 106.6(3) C(33)-C(28)-C(29) 

0(2).Zr-N(l) 123.9(3) C(10)-C(28)-C(29) 

0(l)-Zr.N(l) 110.9(3) C(30)-C(29)-C(28) 

N(3)-Zr-N(l) 131.97(18) C(29)-C(30)-C(31) 

0(2)-Zr-N(2) 150.1(3) C(32)-C(31)-C(30) 

0(1)-Zr-N(2) 79.0(3) C(32)-C(31)-C(34) 

N(3)-Zr-N(2) 77.5(3) C(30)-C(31)-C(34) 

N(l)-Zr-N(2) 81.3(3) C(31)-C(32)-C(33) 

0(2)-Zr-N(4) 79.4(3) C(28)-C(33)-C(32) 

0(1)-Zr-N(4) 155.9(3) C(36)-C(35)-C(15) 

N(3)-Zr-N(4) 78.7(3) C(36)-C(35)-C(40) 

N(l)-Zr-N(4) 79.1(3) C(15)-C(35)-C(40) 

N(2)-Zr-N(4) 124.85(19) C(37)-C(36)-C(35) 

N(l)-C(l)-C(20) 126.8(10) C(36)-C(37)-C(38) 

N(l)-C(l)-C(2) 110.8(11) C(37)-C(38)-C(39) 

C(20)-C(l)-C(2) 122.4(10) C(37)-C(38)-C(41) 

C(3)-C(2)-C(l) 105.3(10) C(39)-C(38)-C(41) 

C(4)-C(3)-C(2) 106.9(10) C(40)-C(39)-C(38) 

1.499(10) 

1.334(2) 

1.498(10) 

1.524(7) 

1.586(2) 

1.522(7) 

1.523(7) 

1.523(7) 

118.7(13) 

125.5(12) 

115.5(10) 

119.0(10) 

120.1(10) 

118.8(12) 

118.4(11) 

127.0(11) 

114.6(12) 

123.0(11) 

124.1(12) 

124.9(12) 

112.6(12) 

122.0(11) 

123.2(15) 

125.9(14) 

111.7(13) 

124.8(16) 

123.4(16) 

124.9(16) 
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Table m. (continued) 

C(3)-C(4)-N(l) 110.4(10) C(39)-C(40)-C(35) 121.3(14) 

C(3)-C(4)-C(5) 126.0(11) C(47)-C(42)-C(43) 120.5(11) 

N(l)-C(4)-C(5) 123.6(9) C(47)-C(42)-C(20) 123.3(11) 

C(4)-C(5)-C(6) 129.7(11) C(43)-C(42)-C(20) 116.2(10) 

C(4).C(5)-C(21) 114.0(10) C(44)-C(43)-C(42) 115.8(11) 

C(6)-C(5)-C(21) 116.0(11) C(43)-C(44)-C(45) 120.8(11) 

C(7)-C(6)-N(2) 114.1(9) C(46)-C(45)-C(44) 117.9(11) 

C(7).C(6)-C(5) 124.9(11) C(46)-C(45)-C(48) 126.3(13) 

N(2)-C(6)-C(5) 121.0(11) C(44)-C(45)-C(48) 115.8(12) 

C(6)-C(7)-C(8) 105.0(10) C(45)-C(46)-C(47) 122.4(13) 

C(7)-C(8)-C(9) 106.4(10) C(42)-C(47)-C(46) 122.6(13) 

N(2)-C(9).C(10) 125.8(11) C(1)-N(1).C(4) 106.0(8) 

N(2)-C(9).C(8) 111.0(9) C(l)-N(l)-Zr 125.5(8) 

C(10)-C(9)-C(8) 123.1(10) C(4)-N(l)-Zr 122.5(7) 

C(ll)-C(10)-C(9) 123.7(10) C(9)-N(2)-C(6) 102.8(10) 

C(ll)-C(10)-C(28) 114.5(9) C(9)-N(2)-Zr 125.5(7) 

C(9)-C(10)-C(28) 121.8(11) C(6)-N(2)-Zr 124.0(7) 

C(10)-C(ll)-N(3) 125.3(9) C(14)-N(3)-C(ll) 107.1(8) 

C(10)-C(ll)-C(12) 128.7(10) C(14)-N(3)-Zr 123.8(7) 

N(3)-C(ll)-C(12) 104.7(10) C(ll)-N(3)-Zr 120.3(8) 

C(13>C(12)-C(11) 110.9(10) C(16)-N(4)-C(19) 108.8(9) 

C(12>C(13)-C(14) 108.1(10) C(16)-N(4)-Zr 124.2(6) 

N(3)-C(14)-C(15) 126.5(10) C(19)-N(4)-Zr 125.1(7) 

N(3)-C(14)-C(13) 108.9(10) C(53)-0(1)-Zr 130.7(6) 

C(15)-C(14)-C(13) 124.4(11) C(55)-0(2)-Zr 122.8(7) 

C(16)-C(15)-C(14) 121.0(11) C(53)-C(52)-C(51) 115.1(7) 

C(16)-C(15)-C(35) 119.8(10) C(53)-C(52)-C(49) 116.6(11) 

C(14)-C(15)-C(35) 119.0(9) C(51)-C(52)-C(49) 108.1(5) 

N(4)-C(16)-C(15) 130.0(11) C(53)-C(52)-C(50) 100.2(10) 

N(4)-C(16)-C(17) 106.6(8) C(51)-C(52)-C(50) 108.0(5) 

C(15).C(16)-C(17) 123.5(10) C(49)-C(52)-C(50) 108.0(5) 
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Table HI. (continued) 

C(18)-C(17)-C(16) 107.7(11) C(54)-C(53)-0(l) 127.5(8) 

C(17)-C(18)-C(19) 108.9(10) C(54)-C(53)-C(52) 123.7(7) 

N(4)-C(19)-C(20) 123.6(11) 0(1)-C(53)-C(52) 108.4(6) 

N(4)-C(19)-C(18) 107.9(9) C(53)-C(54)-C(55) 116.6(8) 

C(20)-C(19)-C(18) 128.2(10) 0(2)-C(55)-C(54) 112.0(10) 

C(l)-C(20)-C(19) 124.6(10) 0(2)-C(55)-C(56) 137.0(16) 

C(l)-C(20)-C(42) 122.9(9) C(54)-C(55)-C(56) 106.5(12) 

C(19)-C(20)-C(42) 112.4(10) 0(2)-C(55)-C(57) 95.6(7) 

C(26)-C(21)-C(22) 123.1(12) C(54)-C(55)-C(57) 110.4(10) 

C(26)-C(21)-C(5) 118.5(11) C(56)-C(55)-C(57) 88.3(13) 

C(22)-C(21)-C(5) 118.2(11) C(60)-C(57)-C(59) 108.2(5) 

C(21)-C(22)-C(23) 118.7(14) C(60)-C(57)-C(58) 108.2(5) 

C(24)-C(23)-C(22) 117.3(13) C(59)-C(57)-C(58) 108.2(5) 

C(25)-C(24)-C(23) 121.7(13) C(60)-C(57)-C(55) 119.5(9) 

C(25)-C(24)-C(27) 121.0(15) C(59)-C(57)-C(55) 108.6(10) 

C(23)-C(24)-C(27) 117.2(13) C(58)-C(57)-C(55) 103.8(12) 

C(24)-C(25)-C(26) 120.4(14) 
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Table IV. Crystal data and structure refinement for complex 4, [( I 'l P)ZrO]2. 

Empirical formula ^iioHggNj02Zr2 
Formula weight 1736.32 
Temperature 173(2)K 
Wavelength 0.71073 A 
Crystal system Monoclinic 
Space group C2/c 
Unit cell dimensions a = 31.8540(16) A, a = 90°. 

b = 16.7937(8) A, P = 117.254( 
c= 18.8770(9) A, Y = 90°. 

Volume 8977.1(8) 
Z 4 
Density (calculated) 1.285 Mg/m^ 

Absorption coefficient 0.289 mm"' 
F(OOO) 3600 
Crystal size 0.21 X 0.40 X 0.42 mm^ 
Theta range for data collection 2.48 to 28.32^ 
Index ranges -42 ^ h s 37, 0 s k ^ 22, 0 i U 25 
Reflections collected 53684 
Independent reflections 10734 [R(int) = 0.0687] 
Completeness to theta = 28.32° 96.0% 
Refinement method Full-matrix least-squares on F" 
Data / restraints / parameters 10734/0/488 
Goodness-of-fit on 1.007 
Final R indices [I>2o(I)] R1 = 0.0461, wR2 = 0.1068 
R indices (all data) R1 =0.0848, wR2 = 0.1133 
Largest diff. peak and hole 0.587 and -0.435 eA^ 
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Table V. Atomic coordinates (x 10^) and equivalent isotropic displacement parameters 
(A^x 10') for complex 4. U(eq) is defined as one third of the trace of the orthogonalized Uy 
tensor. 

Atom X y z U(eq) 

Zr(l) 49(1) 8424(1) 3345(1) 21(1 

0(1) 0 9165(2) 2500 40(1 

0(2) 0 7676(2) 2500 40(1 

N(l) -521(1) 9041(1) 3525(1) 26(1 

N(2) 493(1) 9406(1) 4191(1) 24(1 

N(3) 689(1) 7759(1) 4211(1) 25(1 

N(4) -327(1) 7396(1) 3607(1) 23(1 

C(l) -969(1) 8776(2) 3340(2) 30(1 

C(2) -1269(1) 9445(2) 3251(2) 41(1 

C(3) -1004(1) 10106(2) 3388(2) 40(1 

C(4) -537(1) 9866(2) 3567(2) 28(1 

C(5) -154(1) 10386(1) 3776(2) 25(1 

C(6) 320(1) 10172(1) 4080(2) 24(1 

C(7) 704(1) 10725(2) 4344(2) 32(1 
C(8) 1109(1) 10298(2) 4634(2) 34(1 

C(9) 978(1) 9464(2) 4545(2) 26(1 

C(10) 1291(1) 8819(2) 4774(2) 27(1 

C(ll) 1151(1) 8019(2) 4637(2) 28(1 

C(12) 1457(1) 7341(2) 4930(2) 40(1 

C(13) 1188(1) 6679(2) 4685(2) 36(1 

C(14) 706(1) 6932(2) 4239(2) 25(1 

C(15) 317(1) 6412(1) 3948(2) 23(1 

C(16) -159(1) 6628(1) 3666(2) 23(1 
C(17) -543(1) 6078(2) 3439(2) 29(1 
C(18) -939(1) 6508(2) 3261(2) 33(1 

C(19) -804(1) 7332(2) 3366(2) 28(1 
C(20) -1108(1) 7976(2) 3245(2) 29(1 
C(21) -282(1) 11253(2) 3681(2) 25(1 
C(22) -223(1) 11715(2) 4323(2) 39(1 
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Table V. (continued) 

C(23) -386(1) 12494(2) 4210(2) 43(1) 

C(24) -607(1) 12834(2) 3473(2) 35(1) 

C(25) -663(1) 12371(2) 2837(2) 53(1) 

C(26) -500(1) 11593(2) 2938(2) 47(1) 

C(27) -784(1) 13681(2) 3365(2) 58(1) 

C(28) 1807(1) 9003(2) 5199(2) 31(1) 

C(29) 2116(1) 8766(2) 4905(2) 40(1) 

C(30) 2587(1) 8977(2) 5295(2) 46(1) 

C(31) 2768(1) 9429(2) 5987(2) 43(1) 

C(32) 2463(1) 9651(2) 6288(2) 42(1) 

C(33) 1993(1) 9444(2) 5905(2) 36(1) 

C(34) 3285(1) 9668(2) 6395(2) 66(1) 

C(35) 425(1) 5537(1) 4007(2) 25(1) 

C(36) 525(1) 5157(2) 3465(2) 45(1) 

C(37) 623(1) 4347(2) 3527(2) 55(1) 

C(38) 615(1) 3891(2) 4122(2) 34(1) 

C(39) 507(1) 4274(2) 4654(2) 55(1) 

C(40) 418(1) 5083(2) 4602(2) 50(1) 

C(41) 721(1) 3005(2) 4196(2) 53(1) 

C(42) -1617(1) 7799(2) 2993(2) 35(1) 

C(43) -1820(1) 7970(2) 3483(2) 50(1) 

C(44) -2299(1) 7807(2) 3244(3) 64(1) 

C(45) -2576(1) 7468(2) 2508(3) 65(1) 

C(46) -2376(1) 7302(2) 2008(2) 61(1) 

C(47) -1902(1) 7471(2) 2246(2) 46(1) 

C(48) -3095(1) 7273(3) 2252(3) 97(2) 
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Table VI. Bond lengths [A] and angles [°] for complex 4. 

Zr(l)-0(1) 1.9719(16) C(15)-C(35) 1.501(3) 

Zr(l)-0(2) 1.9791(16) C(16)-C(17) 1.433(3) 

Zr(l).N(3) 2.241(2) C(17)-C(18) 1.354(4) 

Zr(l)-N(l) 2.246(2) C(18)-C(19) 1.436(3) 

Zr(l).N(2) 2.280(2) C(19)-C(20) 1.399(3) 

Zr(l)-N(4) 2.280(2) C(20)-C(42) 1.495(4) 

Zr(l)-Zr(l)#l 3.0584(5) C(21)-C(26) 1.372(4) 

0(1)-Zr(l)#l 1.9719(16) C(21)-C(22) 1.378(4) 

0(2)-Zr(l)#l 1.9791(16) C(22)-C(23) 1.388(4) 

N(l)-C(l) 1.379(3) C(23)-C(24) 1.364(4) 

N(1)-C(4) 1.390(3) C(24)-C(25) 1.371(4) 

N(2)-C(6) 1.377(3) C(24)-C(27) 1.509(4) 

N(2)-C(9) 1.379(3) C(25)-C(26) 1.386(4) 

N(3)-C(ll) 1.386(3) C(28)-C(29) 1.392(4) 

N(3)-C(14) 1.390(3) C(28)-C(33) 1.397(4) 

N(4)-C(19) 1.378(3) C(29)-C(30) 1.382(4) 

N(4)-C(16) 1.382(3) C(30)-C(31) 1.387(4) 

C(l)-C(20) 1.400(4) C(31)-C(32) 1.382(4) 

C(l)-C(2) 1.436(4) C(31)-C(34) 1.517(4) 

C(2)-C(3) 1.347(4) C(32)-C(33) 1.377(4) 

C(3)-C(4) 1.423(4) C(35)-C(36) 1.361(4) 

C(4)-C(5) 1.402(3) C(35)-C(40) 1.367(4) 

C(5)-C(6) 1.397(3) C(36)-C(37) 1.389(4) 

C(5)-C(21) 1.500(3) C(37)-C(38) 1.370(4) 

C(6)-C(7) 1.432(3) C(38)-C(39) 1.363(4) 

C(7).C(8) 1.352(4) C(38)-C(41) 1.517(4) 

C(8)-C(9) 1.449(3) C(39)-C(40) 1.381(4) 

C(9)-C(10) 1.400(3) C(42)-C(43) 1.380(4) 

C(10)-C(ll) 1.402(3) C(42)-C(47) 1.394(4) 

C(10)-C(28) 1.492(3) C(43)-C(44) 1.406(4) 

C(ll)-C(12) 1.435(3) C(44)-C(45) 1.383(5) 



www.manaraa.com

212 

Table VI. (continued) 

C(12)-C(13) 1.350(4) C(45)-C(46) 1.389(5) 

C(13)-C(14) 1.435(4) C(45)-C(48) 1.530(4) 

C(14)-C(15) 1.405(3) C(46)-C(47) 1.393(4) 

C(15)-C(16) 1.407(3) 

0(l)-Zr(l)-0(2) 78.56(8) C(13)-C(12)-C(ll) 108.0(2) 

0(1)-Zr(l)-N(3) 127.83(6) C(12)-C(13)-C(14) 107.3(2) 

0(2)-Zr(l)-N(3) 88.92(6) N(3)-C(14)-C(15) 126.4(2) 

0(1)-Zr(l)-N(l) 93.46(7) N(3)-C(14).C(13) 109.3(2) 

0(2)-Zr(l)-N(l) 130.06(6) C(15)-C(14)-C(13) 124.0(2) 

N(3)-Zr(l)-N(l) 130.35(8) C(14)-C(15)-C(16) 126.4(2) 

0(1)-Zr(l)-N(2) 84.48(7) C(14)-C(15)-C(35) 116.7(2) 

0(2)-Zr(l)-N(2) 144.90(6) C(16)-C(15)-C(3^) 116.8(2) 

N(3)-Zr(l)-N(2) 77.56(7) N(4)-C(16)-C(15) 125.5(2) 

N(l)-Zr(l)-N(2) 81.08(7) N(4)-C(16)-C(17) 109.4(2) 

0(1)-Zr(l)-N(4) 142.98(6) C(15)-C(16)-C(17) 124.9(2) 

0(2)-Zr(l)-N(4) 80.74(7) C(18)-C(17)-C(16) 107.5(2) 

N(3)-Zr(l)-N(4) 81.78(7) C(17).C(18)-C(19) 107.2(2) 

N(l)-Zr(l)-N(4) 77.03(7) N(4)-C(19)-C(20) 124.8(2) 

N(2)-Zr(l)-N(4) 127.86(7) N(4).C(19)-C(18) 109.5(2) 

0(1)-Zr(l)-Zr(l)#l 39.15(6) C(20)-C(19)-C(18) 125.7(2) 

0(2)-Zr(l)-Zr(l)#l 39.41(6) C(19)-C(20).C(1) 124.4(2) 

N(3)-Zr(l)-Zr(l)#l 112.65(6) C(19)-C(20)-C(42) 117.8(2) 

N(l)-Zr(l)-Zr(l)#l 116.98(6) C(l)-C(20)-C(42) 117.8(2) 

N(2)-Zr(l)-Zr(l)#l 117.70(5) C(26)-C(21)-C(22) 117.8(2) 

N(4).Zr(l)-Zr(l)#l 114.42(5) C(26)-C(21)-C(5) 120.6(2) 

Zr(l)#l-0(1)-Zr(l) 101.70(12) C(22)-C(21)-C(5) 121.4(2) 

Zr(l)#l-0(2)-Zr(l) 101.19(11) C(21)-C(22)-C(23) 120.3(3) 

C(l)-N(l)-C(4) 105.9(2) C(24)-C(23)-C(22) 122.2(3) 

C(l)-N(l)-Zr(l) 128.80(17) C(23)-C(24)-C(25) 117.1(3) 

C(4)-N(l).Zr(l) 121.58(17) C(23)-C(24)-C(27) 121.2(3) 
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C(6).N(2)-C(9) 106.7(2) C(25)-C(24)-C(27) 121.7(3) 

C(6)-N(2)-Zr(l) 119.57(16) C(24)-C(25)-C(26) 121.6(3) 

C(9).N(2)-Zr(l) 126.09(16) C(21)-C(26)-C(25) 121.0(3) 

C(ll)-N(3)-C(14) 106.3(2) C(29)-C(28)-C(33) 117.6(3) 

C(ll)-N(3)-Zr(l) 129.48(16) C(29)-C(28)-C(10) 122.0(3) 

C(14).N(3)-Zr(l) 122.21(16) C(33)-C(28)-C(10) 120.4(2) 

C(19)-N(4)-C(16) 106.3(2) C(30)-C(29)-C(28) 120.6(3) 

C(19)-N(4)-Zr(l) 126.68(16) C(29)-C(30)-C(31) 121.5(3) 

C(16>N(4)-Zr(l) 120.17(15) C(32)-C(31)-C(30) 117.9(3) 

N(l)-C(l)-C(20) 125.0(2) C(32)-C(31)-C(34) 121.5(3) 

N(l)-C(l)-C(2) 109.6(2) C(30)-C(31)-C(34) 120.6(3) 

C(20).C(1)-C(2) 125.4(2) C(33)-C(32)-C(31) 121.0(3) 

C(3).C(2)-C(1) 107.2(2) C(32)-C(33)-C(28) 121.3(3) 

C(2)-C(3)-C(4) 108.0(2) C(36)-C(35)-C(40) 117.0(3) 

N(l)-C(4)-C(5) 125.8(2) C(36)-C(35)-C(15) 121.8(2) 

N(l)-C(4)-C(3) 109.4(2) C(40)-C(35)-C(15) 121.2(2) 

C(5)-C(4)-C(3) 124.8(2) C(35)-C(36)-C(37) 121.1(3) 

C(6)-C(5)-C(4) 126.4(2) C(38)-C(37)-C(36) 122.0(3) 

C(6)-C(5).C(21) 118.9(2) C(39)-C(38)-C(37) 116.5(3) 

C(4).C(5)-C(21) 114.7(2) C(39)-C(38)-C(41) 121.1(3) 

N(2)-C(6)-C(5) 125.8(2) C(37)-C(38)-C(41) 122.5(3) 

N(2).C(6)-C(7) 109.6(2) C(38)-C(39)-C(40) 121.6(3) 

C(5)-C(6)-C(7) 124.6(2) C(35)-C(40)-C(39) 121.8(3) 

C(8).C(7).C(6) 107.4(2) C(43)-C(42)-C(47) 118.1(3) 

C(7).C(8)-C(9) 107.3(2) C(43)-C(42)-C(20) 121.1(3) 

N(2)-C(9)-C(10) 125.2(2) C(47)-C(42)-C(20) 120.7(3) 

N(2)-C(9)-C(8) 108.8(2) C(42)-C(43)-C(44) 121.2(3) 

C(10).C(9)-C(8) 125.9(2) C(45)-C(44).C(43) 120.1(4) 

C(9)-C(10)-C(ll) 124.2(2) C(44)-C(45)-C(46) 119.1(3) 

C(9)-C(10)-C(28) 117.3(2) C(44)-C(45)-C(48) 120.4(4) 

C(ll)-C(10)-C(28) 118.5(2) C(46)-C(45)-C(48) 120.5(4) 
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Table VI. (continued) 

N(3).C(11)-C(10) 125.0(2) 

N(3)-C(ll)-C(12) 109.1(2) 

C(10)-C(ll)-C(12) 125.9(2) 

C(45)-C(46)-C(47) 120.4(3) 

C(46)-C(47)-C(42) 121.0(3) 
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Table VII. Crystal data, data collection, and solution and refinement for complex 5, 
[(TTP)Zr],(//-0)(;/-0H)2. 

Empirical formula 
Crystal Habit, color 
Crystal size 
Crystal system 
Space group 

Volume 
Z 
Formula weight 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Difiractometer 
Wavelength 
Temperature 
6 range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
System used 
Solution 
Refinement method 
Weighting scheme 

Absorption correction 
Max. and min. transmission 
Data / restraints / parameters 
R indices (I>2o(I) = 5875) 
R indices (all data) 
Goodness-of-fit on 
Largest difif. peak and hole 

a = 90° 
P = 118.930(1)' 
Y = 90° 

Cs7^^46N40l.5oZr 
Plate, Red 
0.35 X 0.26 X 0.13 mm 
Monoclinic 
C2/c 
a = 32.0930(7) A 
b = 16.8621(3) A 
c = 19.0706(4) A 
9032.3(3) A' 
8 
902.20 
1.327 Mg/m^ 
0.291 mm 
3744 
Siemens SMART Platform CCD 
0.71073 A 
173(2)K 
1.41 to 25.07° 
-3S i h ̂ 33,0 ski20,0 <1^22 
22019 
7894 (Ri,, = 0.0434) 
SHELXTL-V5.0 
Direct methods 
Full-matrix least-squares on F" 
W = [a^(F„2) +(AP)2 + (BP)]', where P = 
(Fo" + 2Fc^)/3, A = 0.0793, and B = 12.7127. 
SADABS (Sheldrick, 1996) 
1.0000 and 0.716 
7891 /48/583 
R l =  0 . 0 5 5 3 ,  w R 2  =  0 . 1 3 4 8  
R1 =0.0840, wR2 = 0.1526 
1.030 
0.855 and -0.828 eA*^ 
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Table Vm. Atomic coordinates [x 10*] and equivalent isotropic displacement parameters 
[A^ X 10^] for complex 5. 

Atom X y z U(eq) SOF 

Zr(l) 33(1) 8483(1) 8328(1) 24(1) 1 

0(1) 0 7574(2) 7500 48(1) 1 

0(2) -335(2) 8988(4) 7258(2) 39(2) 0.50 

0(3) 536(2) 8668(4) 7888(2) 36(2) 0.50 

N(l) -316(1) 7434(2) 8607(2) 28(1) 1 

N(2) -514(1) 9086(2) 8585(2) 28(1) 1 
N(3) 471(1) 9450(2) 9198(2) 30(1) 1 
N(4) 683(1) 7788(2) 9235(2) 27(1) 1 

C(l) -150(1) 6660(2) 8682(2) 28(1) 1 
C(2) -538(1) 6120(2) 8440(2) 34(1) 1 
C(3) -935(2) 6547(2) 8241(2) 35(1) 1 
C(4) -799(1) 7373(2) 8348(2) 30(1) 1 
C(5) -1107(1) 8005(2) 8227(2) 31(1) 1 
C(6) -964(1) 8807(2) 8361(2) 32(1) 1 
C(7) -1277(2) 9455(2) 8247(3) 46(1) 1 

C(8) -1020(2) 10129(2) 8397(3) 45(1) 1 
C(9) -546(1) 9904(2) 8605(2) 31(1) 1 
C(10) -172(1) 10438(2) 8801(2) 28(1) 1 
C(ll) 303(1) 10222(2) 9100(2) 30(1) I 
C(12) 695(2) 10765(2) 9375(3) 42(1) 1 
C(13) 1095(2) 10337(2) 9645(3) 42(1) 1 
C(14) 961(1) 9509(2) 9546(2) 33(1) 1 
C(15) 1277(1) 8868(2) 9756(2) 32(1) 1 
C(16) 1141(1) 8059(2) 9626(2) 30(1) 1 
C(17) 1467(2) 7404(2) 9909(3) 41(1) 1 
C(18) 1203(2) 6736(2) 9686(3) 38(1) 1 
C(19) 715(1) 6968(2) 9269(2) 30(1) 1 
C(20) 329(1) 6442(2) 8981(2) 28(1) 1 
C(21) -1619(2) 7821(2) 7953(3) 37(1) 1 
C(22) -1822(2) 7976(3) 8438(3) 49(1) 1 
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Table Vm. (continued) 

C(23) -2295(2) 7793(3) 8177(3) 57(1 

C(24) -2576(2) 7441(3) 7431(3) 53(1 

C(25) -2370(2) 7290(3) 6957(3) 48(1 

C(26) -1903(2) 7477(2) 7203(3) 41(1 

C(27) -3090(2) 7217(4) 7168(4) 74(2 

C(28) -304(1) 11298(2) 8681(2) 29(1 

C(29) -267(2) 11765(2) 9294(3) 49(1 

C(30) -421(2) 12549(2) 9159(3) 51(1 

C(31) -610(2) 12885(2) 8418(3) 40(1 

C(32) -644(2) 12408(3) 7804(3) 73(2 

C(33) -493(2) 11632(3) 7931(3) 65(2 

C(34) -783(2) 13734(3) 8272(3) 62(2 

C(35) 1798(1) 9064(2) 10173(2) 34(1 

C(36) 2006(2) 9460(2) 10903(3) 41(1 

C(37) 2482(2) 9669(3) 11276(3) 48(1 

C(38) 2765(2) 9490(3) 10941(3) 48(1 

C(39) 2559(2) 9082(3) 10219(3) 52(1 

C(40) 2085(2) 8878(3) 9840(3) 44(1 

C(41) 3290(2) 9721(3) 11349(4) 72(2 

C(42) 435(1) 5570(2) 9042(2) 32(1 

C(43) 412(2) 5110(3) 9627(3) 68(2 

C(44) 509(2) 4302(3) 9685(3) 73(2 

C(45) 630(2) 3931(2) 9183(3) 41(1 

C(46) 635(2) 4375(3) 8600(3) 62(2 

C(47) 536(2) 5182(2) 8522(3) 54(1 

C(48) 742(2) 3049(3) 9271(4) 62(2 

C(49) -3169(2) 9269(4) 11175(5) 93(2 

C(50) -2705(2) 9215(4) 11308(4) 87(2 

C(51) -2412(2) 9869(4) 11566(4) 84(2 

C(52) -2583(2) 10569(4) 11696(4) 81(2 

C(53) -3048(2) 10617(3) 11550(4) 79(2 
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Table VIII. (continued) 

C(54) -3338(2) 9965(4) 11292(4) 89(2) 1 

C(55) -2048(5) 7825(10) 10425(8) 200(6) 1 

C(56) -2427(6) 8300(9) 9964(9) 187(6) 1 

C(57) -2882(6) 7979(10) 9555(9) 195(7) 1 
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Table DC. Bond lengths [A] and angles ["] for complex 5. 

Zr(l)-0(2) 1.988(4) C(5)-C(21) 1.497(6) 

Zr(l)-0(2)#1 1.990(4) C(6)-C(7) 1.426(5) 

Zr(l)-0(1) 2.166(3) C(7)-C(8) 1.350(6) 

Zr(l)-0(3)#1 2.169(5) C(8)-C(9) 1.427(6) 

Zr(l)-0(3) 2.171(5) C(9)-C(10) 1.400(5) 

Zr(l)-N(3) 2.266(3) C(10)-C(ll) 1.392(5) 

Zr(l)-N(2) 2.279(3) C(10)-C(28) 1.498(5) 

Zr(l)-N(4) 2.286(3) C(ll)-C(12) 1.435(6) 

Zr(l)-N(l) 2.291(3) C(12)-C(13) 1.339(6) 

Zr(l)-Zr(l)#l 3.0600(7) C(13)-C(14) 1.446(5) 

0(1)-Zr(l)#l 2.166(3) C(14)-C(15) 1.402(5) 

0(2)-0(3)#l 0.782(7) C(15)-C(16) 1.417(5) 

0(2)-Zr(l)#l 1.990(4) C(15)-C(35) 1.501(5) 

0(3)-0(2)#l 0.781(7) C(16)-C(17) 1.434(5) 

0(3)-Zr(l)#l 2.169(5) C(17)-C(18) 1.349(6) 

N(l)-C(4) 1.383(5) C(18)-C(19) 1.427(5) 

N(l)-C(l) 1.390(4) C(19)-C(20) 1.402(5) 

N(2)-C(6) 1.376(5) C(20)-C(42) 1.502(5) 

N(2)-C(9) 1.384(5) C(21)-C(22) 1.389(6) 

N(3)-C(14) 1.383(5) C(21)-C(26) 1.397(6) 

N(3)-C(ll) 1.386(4) C(22)-C(23) 1.384(7) 

N(4)-C(16) 1.367(5) C(23)-C(24) 1.396(7) 

N(4)-C(19) 1.385(4) C(24)-C(25) 1.379(7) 

C(l)-C(20) 1.404(5) C(24).C(27) 1.521(7) 

C(l)-C(2) 1.428(5) C(25)-C(26) 1.373(6) 

C(2)-C(3) 1.350(6) C(28)-C(29) 1.367(6) 

C(3)-C(4) 1.445(5) C(28)-C(33) 1.375(6) 

C(4)-C(5) 1.394(5) C(29)-C(30) 1.390(6) 

C(5)-C(6) 1.411(5) 
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Table IX. (continued) 

C(30)-C(31) 1.363(6) C(45)-C(46) 1.347(6) 

C(31)-C(32) 1.380(6) C(45)-C(48) 1.520(6) 

C(31)-C(34) 1.511(6) C(46)-C(47) 1.389(6) 
C(32)-C(33) 1.376(6) C(49)-C(54) 1.357(8) 
C(35)-C(40) 1.382(6) C(49)-C(50) 1.386(8) 
C(35)-C(36) 1.391(6) C(50)-C(51) 1.375(8) 
C(36)-C(37) 1.383(6) C(51)-C(52) 1.373(8) 
C(37)-C(38) 1.372(6) C(52)-C(53) 1.381(8) 
C(38)-C(39) 1.387(7) C(53)-C(54) 1.370(8) 
C(38)-C(41) 1.525(6) C(55)-C(56) 1.363(13) 
C(39)-C(40) 1.375(6) C(55)-C(57)#2 1.38(2) 
C(42)-C(47) 1.352(6) C(56).C(57) 1.39(2) 
C(42)-C(43) 1.390(6) C(57)-C(55)#2 1.38(2) 
C(43)-C(44) 1.390(6) 

C(44)-C(45) 1.350(6) 

0(2)-Zr(l)-0(2)#l 56.6(4) 0(2)#1-Zr(l)-N(3) 78.7(2) 

0(2)-Zr(l)-0(l) 76.1(2) 0(1)-Zr(l)-N(3) 146.90(8) 

0(2)#1-Zr(l)-0(1) 76.1(2) 0(3)#1-Zr(l)-N(3) 125.6(2) 

0(2)-Zr(l)-0(3)#l 21.1(2) 0(3)-Zr(l)-N(3) 82.3(2) 

0(2)#1-Zr(l)-0(3)#1 74.0(3) 0(2)-Zr(l)-N(2) 83.8(2) 

0(1)-Zr(l)-0(3)#1 66.7(2) 0(2)#1-Zr(l)-N(2) 124.4(2) 

0(2)-Zr(l)-0(3) 74.0(3) 0(1)-Zr(l)-N(2) 134.57(8) 

0(2)#l-Zr(l)-0(3) 21.1(2) 0(3)#1-Zr(l)-N(2) 80.1(2) 

0(1)-Zr(l).0(3) 66.6(2) 0(3)-Zr(l).N(2) 144.4(2) 

0(3)#l-Zr(l)-0(3) 88.0(3) N(3)-Zr(l)-N(2) 77.89(11) 

0(2)-Zr(l)-N(3) 107.0(2) 0(2)-Zr(l)-N(4) 150.2(2) 
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Table IX. (continued) 

0(2)#1-Zr(l)-N(4) 97.5(2) 

0(1)-Zr(l)-N(4) 83.90(8) 

0(3)#1-Zr(l)-N(4) 150.5(2) 

0(3)-Zr(l)-N(4) 77.9(2) 

N(3)-Zr(l)-N(4) 78.42(10) 

N(2)-Zr(l)-N(4) 125.60(11) 

0(2)-Zr(l)-N(l) 117.1(2) 

0(2)#1-Zr(l)-N(l) 152.5(2) 

0(1)-Zr(l)-N(l) 76.48(10) 

0(3)#1-Zr(l)-N(l) 96.1(2) 

0(3)-Zr(l)-N(l) 137.7(2) 

N(3)-Zr(l)-N(l) 125.83(11) 

N(2)-Zr(l)-N(l) 77.29(10) 

N(4)-Zr(l)-N(l) 78.36(11) 

0(2)-Zr(l)-Zr(l)#l 39.73(14) 

0(2)#l.Zr(l)-Zr(l)#l 39.7(2) 

0(1)-Zr(l)-Zr(l)#l 45.05(7) 

0(3)#1-Zr(l)-Zr(l)#l 45.19(12) 

0(3)-Zr(l)-Zr(l)#l 45.15(12) 

N(3)-Zr(l)-Zr(l)#l 117.69(8) 

N(2)-Zr(l)-Zr(l)#l 123.10(8) 

N(4)-Zr(l)-Zr(l)#l 111.29(8) 

N(l)-Zr(l)-Zr(l)#l 116.27(8) 

Zr(l)-0(1)-Zr(l)#l 89.91(14) 

0(3)#l-0(2)-Zr(l) 92.6(6) 

0(3)#l-0(2)-Zr(l)#l 92.7(6) 

Zr(l)-0(2)-Zr(l)#l 100.6(3) 

0(2)#l-0(3)-Zr(l)#l 66.3(5) 

0(2)#l-0(3)-Zr(l) 66.3(5) 

Zr(l)#l-0(3)-Zr(l) 89.7(2) 

C(4)-N(l)-C(l) 106.0(3) 

C(4)-N(l)-Zr(l) 124.3(2) 

C(l)-N(l)-Zr(l) 122.8(2) 

C(6)-N(2)-C(9) 105.6(3) 

C(6)-N(2)-Zr(l) 125.7(2) 

C(9)-N(2)-Zr(l) 121.7(3) 

C(14)-N(3)-C(ll) 105.9(3) 

C(14)-N(3)-Zr(l) 124.1(2) 

C(ll)-N(3)-Zr(l) 121.0(2) 

C(16)-N(4)-C(19) 105.8(3) 

C(16)-N(4)-Zr(l) 126.1(2) 

C(19)-N(4)-Zr(l) 124.5(2) 

N(l)-C(l)-C(20) 125.3(3) 

N(l)-C(l)-C(2) 109.5(3) 

C(20)-C(l)-C(2) 125.1(3) 

C(3)-C(2)-C(l) 108.0(3) 

C(2)-C(3)-C(4) 107.1(4) 

N(l)-C(4)-C(5) 125.6(3) 

N(l)-C(4)-C(3) 109.4(3) 

C(5)-C(4)-C(3) 124.9(4) 

C(4)-C(5)-C(6) 124.2(4) 

C(4)-C(5)-C(21) 117.9(3) 

C(6)-C(5)-C(21) 117.9(3) 

N(2)-C(6)-C(5) 125.7(3) 

N(2)-C(6)-C(7) 109.9(3) 

C(5)-C(6)-C(7) 124.4(4) 

C(8)-C(7).C(6) 107.6(4) 
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Table DC. (continued) 

C(7)-C(8)-C(9) 107.0(4) 

N(2)-C(9)-C(10) 125.6(3) 

N(2)-C(9)-C(8) 109.9(3) 

C(10)-C(9)-C(8) 124.4(3) 

C(11K(10)-C(9) 124.7(3) 

C(ll)-C(10)-C(28) 119.2(3) 

C(9)-C(10)-C(28) 116.1(3) 

N(3)-C(ll)-C(10) 125.3(3) 

N(3)-C(ll)-C(12) 109.6(3) 

C(10)-C(ll)-C(12) 125.2(3) 

C(13)-C(12)-C(l 1) 107.7(3) 

C(12).C(13)-C(14) 107.5(4) 

N(3)-C(14)-C(15) 125.4(3) 

N(3)-C(14)-C(13) 109.3(3) 

C(15)-C(14)-C(13) 125.4(4) 

C(14)-C(15).C(16) 125.0(4) 

C(14)-C(15)-C(35) 116.7(3) 

C(16)-C(15)-C(35) 118.3(3) 

N(4)-C(16)-C(15) 125.1(3) 

N(4)-C(16)-C(17) 110.1(3) 

C(15).C(16)-C(17) 124.7(3) 

C(18)-C(17).C(16) 107.0(4) 

C(17>C(18)-C(19) 107.4(3) 

N(4)-C(19)-C(20) 125.6(3) 

N(4)-C(19)-C(18) 109.7(3) 

C(20)-C(19)-C(18) 124.7(3) 

C(19)-C(20)-C(l) 125.4(3) 

C(19)-C(20)-C(42) 117.7(3) 

C(1)-C(20).C(42) 116.8(3) 

C(22)-C(21)-C(26) 118.4(4) 

C(22)-C(21)-C(5) 121.2(4) 

C(26)-C(21)-C(5) 120.4(4) 

C(23)-C(22)-C(21) 120.3(5) 

C(22)-C(23)-C(24) 121.2(5) 

C(25)-C(24)-C(23) 117.9(4) 

C(25)-C(24)-C(27) 121.7(5) 

C(23)-C(24)-C(27) 120.4(5) 

C(26)-C(25)-C(24) 121.6(5) 

C(25)-C(26)-C(21) 120.6(4) 

C(29)-C(28)-C(33) 117.8(4) 

C(29)-C(28)-C(10) 121.7(4) 

C(33)-C(28)-C(10) 120.4(4) 

C(28)-C(29)-C(30) 120.8(4) 

C(31)-C(30)-C(29) 121.9(4) 

C(30)-C(31)-C(32) 116.7(4) 

C(30)-C(31)-C(34) 121.7(4) 

C(32)-C(31)-C(34) 121.6(4) 

C(33)-C(32)-C(31) 121.9(4) 

C(28)-C(33)-C(32) 120.9(4) 

C(40).C(35)-C(36) 117.7(4) 

C(40)-C(35)-C(15) 121.7(4) 

C(36)-C(35)-C(15) 120.5(4) 

C(37)-C(36)-C(35) 120.8(4) 

C(38)-C(37)-C(36) 121.3(4) 

C(37)-C(38)-C(39) 117.7(4) 

C(37)-C(38)-C(41) 121.5(5) 
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Table DC. (continued) 

C(39)-C(38)-C(41) 120.8(5) 

C(40).C(39)-C(38) 121.4(5) 

C(39)-C(40)-C(35) 121.0(4) 

C(47)-C(42)-C(43) 116.4(4) 

C(47).C(42)-C(20) 122.9(4) 

C(43)-C(42)-C(20) 120.7(4) 

C(44)-C(43)-C(42) 121.0(4) 

C(45)-C(44)-C(43) 121.8(5) 

C(46)-C(45)-C(44) 116.8(4) 

C(46)-C(45)-C(48) 122.6(4) 

C(44)-C(45)-C(48) 120.6(4) 

C(45)-C(46)-C(47) 122.7(4) 

C(42)-C(47)-C(46) 121.2(4) 

C(54)-C(49)-C(50) 120.5(6) 

C(51)-C(50)-C(49) 120.0(6) 

C(52).C(51)-C(50) 119.3(6) 

C(51)-C(52)-C(53) 120.1(6) 

C(54)-C(53)-C(52) 120.3(6) 

C(49)-C(54)-C(53) 119.7(6) 

C(56)-C(55)-C(57)#2 119(2) 

C(55)-C(56)-C(57) 120(2) 

C(55)#2-C(57)-C(56) 121(2) 
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GENERAL CONCLUSIONS 

Prior to this work, few group 4 metalloporphyrin complexes had been synthesized. 

The extent of reactivity that could be explored with these preceding examples was drastically 

confined as they contained only monodentate ligands. We have prepared useful group 4 

metalloporphyrin complexes that contain metal bound monoanionic and dianionic ligands 

through a number of synthetic strategies. 

The bis(amido), (TTP)Ti(NR2)2, and monoamido, (TTP)Ti(NR2)Cl, complexes were 

prepared to investigate the formation of titanium imido metalloporphyrin complexes. 

Through their reactivity characteristics it was concluded that the synthesis of titanium imido 

complexes by the lithiated amide route is most likely through an intermolecular pathway. An 

additional synthetic pathway to (TTP)Ti=NR complexes was found from treatment of the 

low-valent precursor, (TTP)Ti(7^-alkyne), with nitrene group donors in a formal 2-electron 

group transfer reaction. This route proved invaluable in the production of (TTP)Ti=NPr 

which allowed an assessment of the Ti=N bond reactivity in a reduced steric environment. 

Additional insight into the titanium-nitrogen multiple bond was gained through investigation 

of the rare hydra2ido(2-) derivatives. It was found that the Ti=N moiety in imido and 

hydrazido complexes exhibits moderate nucleophilic reactivity. Furthermore, the first 

examples of titanium porphyrin alkoxido complexes were realized with the isolation of 

(TTP)Ti(0R)2 and (TTP)Ti(OR)Cl. 

The novel characteristics of the d^ titanium metalloporphyrin complexes, 

(TTP)Ti(L)2, were utilized in a range of ligand exchange and group and atom transfer 
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reactions. The interesting magnetic behavior of the bis(phosphine oxide) species has pointed 

to the cause of difficulty in chalcogenide atom transfer from titanium metalioporphryin 

complexes. We have also been able to derive estimates of the Ti=Ch bond strengths, which 

may prove valuable in extending the chemistry of titanium metalloporphyrin complexes. 

The exploration of zirconium and hafhium imido complexes has pointed to a diverse 

cache of reactivity. The steric environment of the porphyrin, although a limitation in the 

synthesis of zirconium and hafhium imido complexes, has facilitated the isolation of unique 

ureato(2-) and guanidino(2-) derivatives. The zirconium imido compound was essential in 

the production and investigation of a number of complexes containing Zr-O bonds. The 

unique aldol-type condensation of pinacolone was found to go through a reactive zirconium 

enolato species. 



www.manaraa.com

226 

ACKNOWLEDGMENTS 

I am grateful to Professor Keith Woo for the level of patience and guidance he 

dispensed. I can't thank him enough for providing the "point to reach" personified by 

himself 

The research contained herein could not have been performed without the expertise 

found in the support services. Thanks to my "wells of knowledge" concerning NMR 

spectroscopy. Dr. Dave Scott and Dr. Shu Xu, for the many, many hours of help. The 

perseverance by Steve Veysey in attaining my EA's was of immeasurable consequence to 

this work. A big thanks to Charles Baker for his adaptability in acquiring mass spectral data. 

Trond Forre and Art Ciccotti in the glass shop who kept me in a steady supply of what I had 

a special knack for destroying. I would also like to thank not only the best crystallographer I 

know of, but a great friend, Dr. Ilia Guzei. 

To the many graduate students and postdocs, within this research group or 

otherwise, with whom I have become fiiends with and have learned from, thank you so 

much. 

Finally, I would like to thank my family for their years of support. Their 

encouragement and excitement have been invaluable. 


	1999
	Group 4 metalloporphyrin alkoxido, amido, hydrazido, and imido complexes: synthesis and reactivity
	Joseph Lyndon Thorman
	Recommended Citation


	 

